論文の概要: MEGA-PT: A Meta-Game Framework for Agile Penetration Testing
- arxiv url: http://arxiv.org/abs/2409.14219v1
- Date: Sat, 21 Sep 2024 18:46:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 23:37:15.908119
- Title: MEGA-PT: A Meta-Game Framework for Agile Penetration Testing
- Title(参考訳): MEGA-PT - アジャイル導入テストのためのメタゲームフレームワーク
- Authors: Yunfei Ge, Quanyan Zhu,
- Abstract要約: MEGA-PTはメタゲーム浸透テストフレームワークである。
ノードレベルのローカルインタラクションのためのマイクロ戦術ゲームと、ネットワーク全体のアタックチェーンのためのマクロ戦略プロセスを備えている。
防衛戦略の改善と、ローカルレベルとネットワークレベルの変更への適応性を提供する。
- 参考スコア(独自算出の注目度): 13.343937277604892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Penetration testing is an essential means of proactive defense in the face of escalating cybersecurity incidents. Traditional manual penetration testing methods are time-consuming, resource-intensive, and prone to human errors. Current trends in automated penetration testing are also impractical, facing significant challenges such as the curse of dimensionality, scalability issues, and lack of adaptability to network changes. To address these issues, we propose MEGA-PT, a meta-game penetration testing framework, featuring micro tactic games for node-level local interactions and a macro strategy process for network-wide attack chains. The micro- and macro-level modeling enables distributed, adaptive, collaborative, and fast penetration testing. MEGA-PT offers agile solutions for various security schemes, including optimal local penetration plans, purple teaming solutions, and risk assessment, providing fundamental principles to guide future automated penetration testing. Our experiments demonstrate the effectiveness and agility of our model by providing improved defense strategies and adaptability to changes at both local and network levels.
- Abstract(参考訳): 侵入テストは、サイバーセキュリティのインシデントがエスカレートする中で、積極的に防御する重要な手段である。
従来の手作業による浸透試験手法は、時間がかかり、リソースが集中的であり、人的ミスを起こしやすい。
自動浸透テストの現在の傾向は非現実的であり、次元性の呪い、スケーラビリティの問題、ネットワーク変更への適応性の欠如といった重大な課題に直面している。
これらの問題に対処するため,我々は,ノードレベルのローカルインタラクションのためのマイクロ戦術ゲームと,ネットワーク規模のアタックチェーンのためのマクロ戦略を特徴とするメタゲーム浸透テストフレームワークMEGA-PTを提案する。
マイクロおよびマクロレベルのモデリングは、分散、適応、協調、高速な浸透テストを可能にする。
MEGA-PTは、最適なローカル浸透計画、紫のチーム化ソリューション、リスクアセスメントなど、さまざまなセキュリティスキームに対するアジャイルソリューションを提供し、将来の自動浸透テストの指針となる基本原則を提供する。
本実験は,局地的およびネットワーク的両レベルでの防御戦略の改善と変化への適応性を提供することにより,我々のモデルの有効性と俊敏性を示すものである。
関連論文リスト
- PentestAgent: Incorporating LLM Agents to Automated Penetration Testing [6.815381197173165]
手動浸透試験は時間と費用がかかる。
大規模言語モデル(LLM)の最近の進歩は、浸透テストを強化する新たな機会を提供する。
我々は,新しいLLMベースの自動浸透試験フレームワークであるPentestAgentを提案する。
論文 参考訳(メタデータ) (2024-11-07T21:10:39Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - ADAPT: A Game-Theoretic and Neuro-Symbolic Framework for Automated Distributed Adaptive Penetration Testing [13.101825065498552]
AIを医療などの現代的なクリティカルインフラストラクチャシステムに統合することで、新たな脆弱性が導入された。
ADAPTは、自動分散適応浸透テストのためのゲーム理論およびニューロシンボリックフレームワークである。
論文 参考訳(メタデータ) (2024-10-31T21:32:17Z) - Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
侵入検知システム(IDS)は,コンピュータネットワークのセキュリティ確保において重要な役割を担っている。
本稿では,自動,効率的,堅牢なネットワーク侵入検出が可能な,新しいマルチエージェント強化学習(RL)アーキテクチャを提案する。
我々のソリューションは、新しい攻撃の追加に対応し、既存の攻撃パターンの変更に効果的に適応するように設計されたレジリエントなアーキテクチャを導入します。
論文 参考訳(メタデータ) (2024-07-08T09:18:59Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - A New Deep Boosted CNN and Ensemble Learning based IoT Malware Detection [0.0]
セキュリティ問題は、特にIoT(Internet of Things)環境で、さまざまなタイプのネットワークで脅かされている。
我々は,新しいマルウェア検出フレームワークであるDeep Squeezed-Boosted and Ensemble Learning (DSBEL)を開発し,Squeezed-Boosted Boundary-Region Split-Transform-Merge (SB-BR-STM) CNNとアンサンブル学習を行った。
論文 参考訳(メタデータ) (2022-12-15T18:14:51Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Behaviour-Diverse Automatic Penetration Testing: A Curiosity-Driven
Multi-Objective Deep Reinforcement Learning Approach [3.5071575478443435]
侵入テストは、実際のアクティブな敵をエミュレートすることで、ターゲットネットワークのセキュリティを評価する上で重要な役割を果たす。
深層強化学習(Deep Reinforcement Learning)は,浸透テストのプロセスを自動化するための,有望なソリューションだと考えられている。
我々は,チェビシェフ分解批判者に対して,侵入試験における異なる目的のバランスをとる多様な敵戦略を見出すことを提案する。
論文 参考訳(メタデータ) (2022-02-22T02:34:16Z) - On Fast Adversarial Robustness Adaptation in Model-Agnostic
Meta-Learning [100.14809391594109]
モデルに依存しないメタラーニング(MAML)は、数発の学習において最も成功したメタラーニング手法の1つである。
メタモデルの一般化力にもかかわらず、マルチショット学習においてMDLがいかに敵対的堅牢性を維持することができるかは明らかではない。
本稿では,ラベルなしデータ拡張,高速な攻撃生成,計算量軽微な微調整を可能にする,汎用的かつ最適化が容易なロバストネス正規化メタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-20T22:03:04Z) - Testing Robustness Against Unforeseen Adversaries [54.75108356391557]
対向ロバストネスの研究は主にL_p摂動に焦点を当てている。
現実世界のアプリケーションでは、開発者はシステムが直面するあらゆる攻撃や汚職にアクセスできる可能性は低い。
我々は、予期せぬ敵に対して、モデルロバスト性を評価するためのフレームワークであるImageNet-UAを紹介する。
論文 参考訳(メタデータ) (2019-08-21T17:36:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。