Cloud Adversarial Example Generation for Remote Sensing Image Classification
- URL: http://arxiv.org/abs/2409.14240v1
- Date: Sat, 21 Sep 2024 20:15:22 GMT
- Title: Cloud Adversarial Example Generation for Remote Sensing Image Classification
- Authors: Fei Ma, Yuqiang Feng, Fan Zhang, Yongsheng Zhou,
- Abstract summary: Most existing adversarial attack methods for remote sensing images merely add adversarial perturbations or patches.
We propose a Perlin noise based cloud generation attack method.
- Score: 9.014861497985299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing adversarial attack methods for remote sensing images merely add adversarial perturbations or patches, resulting in unnatural modifications. Clouds are common atmospheric effects in remote sensing images. Generating clouds on these images can produce adversarial examples better aligning with human perception. In this paper, we propose a Perlin noise based cloud generation attack method. Common Perlin noise based cloud generation is a random, non-optimizable process, which cannot be directly used to attack the target models. We design a Perlin Gradient Generator Network (PGGN), which takes a gradient parameter vector as input and outputs the grids of Perlin noise gradient vectors at different scales. After a series of computations based on the gradient vectors, cloud masks at corresponding scales can be produced. These cloud masks are then weighted and summed depending on a mixing coefficient vector and a scaling factor to produce the final cloud masks. The gradient vector, coefficient vector and scaling factor are collectively represented as a cloud parameter vector, transforming the cloud generation into a black-box optimization problem. The Differential Evolution (DE) algorithm is employed to solve for the optimal solution of the cloud parameter vector, achieving a query-based black-box attack. Detailed experiments confirm that this method has strong attack capabilities and achieves high query efficiency. Additionally, we analyze the transferability of the generated adversarial examples and their robustness in adversarial defense scenarios.
Related papers
- GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data.
In this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples.
arXiv Detail & Related papers (2024-01-11T16:43:16Z) - Defense against Adversarial Cloud Attack on Remote Sensing Salient
Object Detection [21.028664417133793]
We propose to jointly tune adversarial exposure and additive perturbation for attack and constrain image close to cloudy image as Adversarial Cloud.
DefenseNet can defend the proposed Adversarial Cloud in white-box setting and other attack methods in black-box setting.
arXiv Detail & Related papers (2023-06-30T07:06:13Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - Shape-invariant 3D Adversarial Point Clouds [111.72163188681807]
Adversary and invisibility are two fundamental but conflict characters of adversarial perturbations.
Previous adversarial attacks on 3D point cloud recognition have often been criticized for their noticeable point outliers.
We propose a novel Point-Cloud Sensitivity Map to boost both the efficiency and imperceptibility of point perturbations.
arXiv Detail & Related papers (2022-03-08T12:21:35Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Boosting Gradient for White-Box Adversarial Attacks [60.422511092730026]
We propose a universal adversarial example generation method, called ADV-ReLU, to enhance the performance of gradient based white-box attack algorithms.
Our approach calculates the gradient of the loss function versus network input, maps the values to scores, and selects a part of them to update the misleading gradients.
arXiv Detail & Related papers (2020-10-21T02:13:26Z) - Representing Point Clouds with Generative Conditional Invertible Flow
Networks [15.280751949071016]
We propose a simple yet effective method to represent point clouds as sets of samples drawn from a cloud-specific probability distribution.
We show that our method leverages generative invertible flow networks to learn embeddings as well as to generate point clouds.
Our model offers competitive or superior quantitative results on benchmark datasets.
arXiv Detail & Related papers (2020-10-07T18:30:47Z) - Thick Cloud Removal of Remote Sensing Images Using Temporal Smoothness
and Sparsity-Regularized Tensor Optimization [3.65794756599491]
In remote sensing images, the presence of thick cloud accompanying cloud shadow is a high probability event.
A novel thick cloud removal method for remote sensing images based on temporal smoothness and sparsity-regularized tensor optimization is proposed.
arXiv Detail & Related papers (2020-08-11T05:59:20Z) - Permutation Matters: Anisotropic Convolutional Layer for Learning on
Point Clouds [145.79324955896845]
We propose a permutable anisotropic convolutional operation (PAI-Conv) that calculates soft-permutation matrices for each point.
Experiments on point clouds demonstrate that PAI-Conv produces competitive results in classification and semantic segmentation tasks.
arXiv Detail & Related papers (2020-05-27T02:42:29Z) - Cloud and Cloud Shadow Segmentation for Remote Sensing Imagery via
Filtered Jaccard Loss Function and Parametric Augmentation [8.37609145576126]
Current methods for cloud/shadow identification in geospatial imagery are not as accurate as they should, especially in the presence of snow and haze.
This paper presents a deep learning-based framework for the detection of cloud/shadow in Landsat 8 images.
arXiv Detail & Related papers (2020-01-23T19:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.