Rethinking Semantic Parsing for Large Language Models: Enhancing LLM Performance with Semantic Hints
- URL: http://arxiv.org/abs/2409.14469v1
- Date: Sun, 22 Sep 2024 14:35:09 GMT
- Title: Rethinking Semantic Parsing for Large Language Models: Enhancing LLM Performance with Semantic Hints
- Authors: Kaikai An, Shuzheng Si, Helan Hu, Haozhe Zhao, Yuchi Wang, Qingyan Guo, Baobao Chang,
- Abstract summary: We propose SENSE, a novel prompting approach that embeds semantic hints within the prompt.
Experiments show that SENSE consistently improves LLMs' performance across various tasks.
- Score: 20.844061807562436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic Parsing aims to capture the meaning of a sentence and convert it into a logical, structured form. Previous studies show that semantic parsing enhances the performance of smaller models (e.g., BERT) on downstream tasks. However, it remains unclear whether the improvements extend similarly to LLMs. In this paper, our empirical findings reveal that, unlike smaller models, directly adding semantic parsing results into LLMs reduces their performance. To overcome this, we propose SENSE, a novel prompting approach that embeds semantic hints within the prompt. Experiments show that SENSE consistently improves LLMs' performance across various tasks, highlighting the potential of integrating semantic information to improve LLM capabilities.
Related papers
- Evaluating Consistencies in LLM responses through a Semantic Clustering of Question Answering [1.9214041945441436]
We present a new approach for evaluating semanticencies of Large Language Model (LLM)
Our approach evaluates whether LLM re-sponses are semantically congruent for a given question, recognizing that as syntactically different sentences may convey the same meaning.
Using the TruthfulQA dataset to assess LLM responses, the study induces N re-sponses per question and clusters semantically equivalent sentences to measure semantic consistency across 37 categories.
arXiv Detail & Related papers (2024-10-20T16:21:25Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Unveiling the Lexical Sensitivity of LLMs: Combinatorial Optimization for Prompt Enhancement [11.363521189714504]
We show that large language models (LLMs) are over-sensitive to lexical variations in task instructions.
We propose a black-box Combinatorial Optimization framework for Prompt Lexical Enhancement (COPLE)
arXiv Detail & Related papers (2024-05-31T08:53:59Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias.
We propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics.
We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential.
We are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
arXiv Detail & Related papers (2024-05-10T11:44:05Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
In this work, we propose an in-context learning-based method aimed at improving sentence embeddings performance.
Our approach involves adapting the previous prompt-based representation method for autoregressive models.
By scaling model size, we find scaling to more than tens of billion parameters harms the performance on semantic textual similarity tasks.
arXiv Detail & Related papers (2023-07-31T13:26:03Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.