A Large Language Model and Denoising Diffusion Framework for Targeted Design of Microstructures with Commands in Natural Language
- URL: http://arxiv.org/abs/2409.14473v1
- Date: Sun, 22 Sep 2024 14:45:22 GMT
- Title: A Large Language Model and Denoising Diffusion Framework for Targeted Design of Microstructures with Commands in Natural Language
- Authors: Nikita Kartashov, Nikolaos N. Vlassis,
- Abstract summary: We propose a framework that integrates Natural Language Processing (NLP), Large Language Models (LLMs), and Denoising Diffusion Probabilistic Models (DDPMs)
Our framework employs contextual data augmentation, driven by a pretrained LLM, to generate and expand a diverse dataset of microstructure descriptors.
A retrained NER model extracts relevant microstructure descriptors from user-provided natural language inputs, which are then used by the DDPM to generate microstructures with targeted mechanical properties and topological features.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Microstructure plays a critical role in determining the macroscopic properties of materials, with applications spanning alloy design, MEMS devices, and tissue engineering, among many others. Computational frameworks have been developed to capture the complex relationship between microstructure and material behavior. However, despite these advancements, the steep learning curve associated with domain-specific knowledge and complex algorithms restricts the broader application of these tools. To lower this barrier, we propose a framework that integrates Natural Language Processing (NLP), Large Language Models (LLMs), and Denoising Diffusion Probabilistic Models (DDPMs) to enable microstructure design using intuitive natural language commands. Our framework employs contextual data augmentation, driven by a pretrained LLM, to generate and expand a diverse dataset of microstructure descriptors. A retrained NER model extracts relevant microstructure descriptors from user-provided natural language inputs, which are then used by the DDPM to generate microstructures with targeted mechanical properties and topological features. The NLP and DDPM components of the framework are modular, allowing for separate training and validation, which ensures flexibility in adapting the framework to different datasets and use cases. A surrogate model system is employed to rank and filter generated samples based on their alignment with target properties. Demonstrated on a database of nonlinear hyperelastic microstructures, this framework serves as a prototype for accessible inverse design of microstructures, starting from intuitive natural language commands.
Related papers
- Learning to Extract Structured Entities Using Language Models [52.281701191329]
Recent advances in machine learning have significantly impacted the field of information extraction.
We reformulate the task to be entity-centric, enabling the use of diverse metrics.
We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP metric.
arXiv Detail & Related papers (2024-02-06T22:15:09Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
Transformer-based language models are effective but complex, and understanding their inner workings is a significant challenge.
We introduce a family of synthetic CFGs that produce hierarchical rules, capable of generating lengthy sentences.
We demonstrate that generative models like GPT can accurately learn this CFG language and generate sentences based on it.
arXiv Detail & Related papers (2023-05-23T04:28:16Z) - LasUIE: Unifying Information Extraction with Latent Adaptive
Structure-aware Generative Language Model [96.889634747943]
Universally modeling all typical information extraction tasks (UIE) with one generative language model (GLM) has revealed great potential.
We propose a novel structure-aware GLM, fully unleashing the power of syntactic knowledge for UIE.
Over 12 IE benchmarks across 7 tasks our system shows significant improvements over the baseline UIE system.
arXiv Detail & Related papers (2023-04-13T04:01:14Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
We propose the Structure Information Modeling Transformer (SIM-Trans) to incorporate object structure information into transformer for enhancing discriminative representation learning.
The proposed two modules are light-weighted and can be plugged into any transformer network and trained end-to-end easily.
Experiments and analyses demonstrate that the proposed SIM-Trans achieves state-of-the-art performance on fine-grained visual categorization benchmarks.
arXiv Detail & Related papers (2022-08-31T03:00:07Z) - Convex Polytope Modelling for Unsupervised Derivation of Semantic
Structure for Data-efficient Natural Language Understanding [31.888489552069146]
A Convex-Polytopic-Model-based framework shows great potential in automatically extracting semantic patterns by exploiting the raw dialog corpus.
We show that this framework can exploit semantic-frame-related features in the corpus, reveal the underlying semantic structure of the utterances, and boost the performance of the state-of-the-art NLU model with minimal supervision.
arXiv Detail & Related papers (2022-01-25T19:12:44Z) - GroupBERT: Enhanced Transformer Architecture with Efficient Grouped
Structures [57.46093180685175]
We demonstrate a set of modifications to the structure of a Transformer layer, producing a more efficient architecture.
We add a convolutional module to complement the self-attention module, decoupling the learning of local and global interactions.
We apply the resulting architecture to language representation learning and demonstrate its superior performance compared to BERT models of different scales.
arXiv Detail & Related papers (2021-06-10T15:41:53Z) - Rethinking Relational Encoding in Language Model: Pre-Training for
General Sequences [23.806325599416134]
Language model pre-training fails at modeling per-sequence relations in non-natural language domains.
We develop a framework that couples LMPT with deep structure-preserving metric learning to produce richer embeddings.
Our approach offers notable performance improvements on downstream tasks.
arXiv Detail & Related papers (2021-03-18T15:51:04Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
We propose a novel data-driven metamaterial design framework based on deep generative modeling.
We show in this study that the latent space of VAE provides a distance metric to measure shape similarity.
We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems.
arXiv Detail & Related papers (2020-06-27T03:56:55Z) - Data-Driven Topology Optimization with Multiclass Microstructures using
Latent Variable Gaussian Process [18.17435834037483]
We develop a multi-response latent-variable Gaussian process (LVGP) model for the microstructure libraries of metamaterials.
The MR-LVGP model embeds the mixed variables into a continuous design space based on their collective effects on the responses.
We show that considering multiclass microstructures can lead to improved performance due to the consistent load-transfer paths for micro- and macro-structures.
arXiv Detail & Related papers (2020-06-27T03:55:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.