Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems
- URL: http://arxiv.org/abs/2006.15274v2
- Date: Wed, 16 Sep 2020 16:01:43 GMT
- Title: Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems
- Authors: Liwei Wang, Yu-Chin Chan, Faez Ahmed, Zhao Liu, Ping Zhu, Wei Chen
- Abstract summary: We propose a novel data-driven metamaterial design framework based on deep generative modeling.
We show in this study that the latent space of VAE provides a distance metric to measure shape similarity.
We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems.
- Score: 20.659457956055366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metamaterials are emerging as a new paradigmatic material system to render
unprecedented and tailorable properties for a wide variety of engineering
applications. However, the inverse design of metamaterial and its multiscale
system is challenging due to high-dimensional topological design space,
multiple local optima, and high computational cost. To address these hurdles,
we propose a novel data-driven metamaterial design framework based on deep
generative modeling. A variational autoencoder (VAE) and a regressor for
property prediction are simultaneously trained on a large metamaterial database
to map complex microstructures into a low-dimensional, continuous, and
organized latent space. We show in this study that the latent space of VAE
provides a distance metric to measure shape similarity, enable interpolation
between microstructures and encode meaningful patterns of variation in
geometries and properties. Based on these insights, systematic data-driven
methods are proposed for the design of microstructure, graded family, and
multiscale system. For microstructure design, the tuning of mechanical
properties and complex manipulations of microstructures are easily achieved by
simple vector operations in the latent space. The vector operation is further
extended to generate metamaterial families with a controlled gradation of
mechanical properties by searching on a constructed graph model. For multiscale
metamaterial systems design, a diverse set of microstructures can be rapidly
generated using VAE for target properties at different locations and then
assembled by an efficient graph-based optimization method to ensure
compatibility between adjacent microstructures. We demonstrate our framework by
designing both functionally graded and heterogeneous metamaterial systems that
achieve desired distortion behaviors.
Related papers
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Creating a Microstructure Latent Space with Rich Material Information for Multiphase Alloy Design [19.10106845551149]
This study introduces an improved alloy design algorithm that integrates authentic microstructural information to establish precise CPSP relationships.
The approach utilizes a deep-learning framework based on a variational autoencoder to map real microstructural data to a latent space.
arXiv Detail & Related papers (2024-09-04T12:26:19Z) - Consistent machine learning for topology optimization with microstructure-dependent neural network material models [0.0]
We present a framework for multiscale structures with spatially varying microstructural symmetry and differentiably different microstructural descriptors.
Our findings highlight the potential of integrating consistency with density-based design optimization.
arXiv Detail & Related papers (2024-08-25T14:17:43Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - Mechanical Characterization and Inverse Design of Stochastic Architected
Metamaterials Using Neural Operators [2.4918888803900727]
Machine learning is emerging as a transformative tool for the design of architected materials.
Here, we introduce a new end-to-end scientific ML framework, leveraging deep neural operators (DeepONet)
Results obtained from spinodal microstructures, printed using two-photon lithography, reveal that the prediction error for mechanical responses is within a range of 5 - 10%.
arXiv Detail & Related papers (2023-11-23T05:23:15Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGAN is a model with two central innovations.
A $beta$-variational autoencoder is incorporated into a hybrid GAN architecture.
A custom differentiable data augmentation scheme is developed specifically for this architecture.
arXiv Detail & Related papers (2023-02-17T08:49:09Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z) - Data-Driven Topology Optimization with Multiclass Microstructures using
Latent Variable Gaussian Process [18.17435834037483]
We develop a multi-response latent-variable Gaussian process (LVGP) model for the microstructure libraries of metamaterials.
The MR-LVGP model embeds the mixed variables into a continuous design space based on their collective effects on the responses.
We show that considering multiclass microstructures can lead to improved performance due to the consistent load-transfer paths for micro- and macro-structures.
arXiv Detail & Related papers (2020-06-27T03:55:52Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.