Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems
- URL: http://arxiv.org/abs/2006.15274v2
- Date: Wed, 16 Sep 2020 16:01:43 GMT
- Title: Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems
- Authors: Liwei Wang, Yu-Chin Chan, Faez Ahmed, Zhao Liu, Ping Zhu, Wei Chen
- Abstract summary: We propose a novel data-driven metamaterial design framework based on deep generative modeling.
We show in this study that the latent space of VAE provides a distance metric to measure shape similarity.
We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems.
- Score: 20.659457956055366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metamaterials are emerging as a new paradigmatic material system to render
unprecedented and tailorable properties for a wide variety of engineering
applications. However, the inverse design of metamaterial and its multiscale
system is challenging due to high-dimensional topological design space,
multiple local optima, and high computational cost. To address these hurdles,
we propose a novel data-driven metamaterial design framework based on deep
generative modeling. A variational autoencoder (VAE) and a regressor for
property prediction are simultaneously trained on a large metamaterial database
to map complex microstructures into a low-dimensional, continuous, and
organized latent space. We show in this study that the latent space of VAE
provides a distance metric to measure shape similarity, enable interpolation
between microstructures and encode meaningful patterns of variation in
geometries and properties. Based on these insights, systematic data-driven
methods are proposed for the design of microstructure, graded family, and
multiscale system. For microstructure design, the tuning of mechanical
properties and complex manipulations of microstructures are easily achieved by
simple vector operations in the latent space. The vector operation is further
extended to generate metamaterial families with a controlled gradation of
mechanical properties by searching on a constructed graph model. For multiscale
metamaterial systems design, a diverse set of microstructures can be rapidly
generated using VAE for target properties at different locations and then
assembled by an efficient graph-based optimization method to ensure
compatibility between adjacent microstructures. We demonstrate our framework by
designing both functionally graded and heterogeneous metamaterial systems that
achieve desired distortion behaviors.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - MIND: Microstructure INverse Design with Generative Hybrid Neural Representation [25.55691106041371]
inverse design of microstructures plays a pivotal role in optimizing metamaterials with specific, targeted physical properties.
We present a novel generative model that integrates latent diffusion with Holoplane, an advanced hybrid neural representation that simultaneously encodes both geometric and physical properties.
Our approach generalizes across multiple microstructure classes, enabling the generation of diverse, tileable microstructures with significantly improved property accuracy and enhanced control over geometric validity.
arXiv Detail & Related papers (2025-02-01T20:25:47Z) - STAR: Synthesis of Tailored Architectures [61.080157488857516]
We propose a new approach for the synthesis of tailored architectures (STAR)
Our approach combines a novel search space based on the theory of linear input-varying systems, supporting a hierarchical numerical encoding into architecture genomes. STAR genomes are automatically refined and recombined with gradient-free, evolutionary algorithms to optimize for multiple model quality and efficiency metrics.
Using STAR, we optimize large populations of new architectures, leveraging diverse computational units and interconnection patterns, improving over highly-optimized Transformers and striped hybrid models on the frontier of quality, parameter size, and inference cache for autoregressive language modeling.
arXiv Detail & Related papers (2024-11-26T18:42:42Z) - Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Cliqueformer: Model-Based Optimization with Structured Transformers [102.55764949282906]
Large neural networks excel at prediction tasks, but their application to design problems, such as protein engineering or materials discovery, requires solving offline model-based optimization (MBO) problems.
We present Cliqueformer, a transformer-based architecture that learns the black-box function's structure through functional graphical models (FGM)
Across various domains, including chemical and genetic design tasks, Cliqueformer demonstrates superior performance compared to existing methods.
arXiv Detail & Related papers (2024-10-17T00:35:47Z) - Creating a Microstructure Latent Space with Rich Material Information for Multiphase Alloy Design [19.10106845551149]
This study introduces an improved alloy design algorithm that integrates authentic microstructural information to establish precise CPSP relationships.
The approach utilizes a deep-learning framework based on a variational autoencoder to map real microstructural data to a latent space.
arXiv Detail & Related papers (2024-09-04T12:26:19Z) - Mechanical Characterization and Inverse Design of Stochastic Architected
Metamaterials Using Neural Operators [2.4918888803900727]
Machine learning is emerging as a transformative tool for the design of architected materials.
Here, we introduce a new end-to-end scientific ML framework, leveraging deep neural operators (DeepONet)
Results obtained from spinodal microstructures, printed using two-photon lithography, reveal that the prediction error for mechanical responses is within a range of 5 - 10%.
arXiv Detail & Related papers (2023-11-23T05:23:15Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGAN is a model with two central innovations.
A $beta$-variational autoencoder is incorporated into a hybrid GAN architecture.
A custom differentiable data augmentation scheme is developed specifically for this architecture.
arXiv Detail & Related papers (2023-02-17T08:49:09Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - Data-Driven Topology Optimization with Multiclass Microstructures using
Latent Variable Gaussian Process [18.17435834037483]
We develop a multi-response latent-variable Gaussian process (LVGP) model for the microstructure libraries of metamaterials.
The MR-LVGP model embeds the mixed variables into a continuous design space based on their collective effects on the responses.
We show that considering multiclass microstructures can lead to improved performance due to the consistent load-transfer paths for micro- and macro-structures.
arXiv Detail & Related papers (2020-06-27T03:55:52Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.