論文の概要: Distributionally Robust Inverse Reinforcement Learning for Identifying Multi-Agent Coordinated Sensing
- arxiv url: http://arxiv.org/abs/2409.14542v1
- Date: Sun, 22 Sep 2024 17:44:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 22:19:40.854386
- Title: Distributionally Robust Inverse Reinforcement Learning for Identifying Multi-Agent Coordinated Sensing
- Title(参考訳): マルチエージェント協調センシングのための分布ロバスト逆強化学習
- Authors: Luke Snow, Vikram Krishnamurthy,
- Abstract要約: 我々は、マルチエージェントセンシングシステムの実用機能を再構築するために、分布性に頑健な逆強化学習(IRL)アルゴリズムを導出する。
このロバストな推定と半無限の最適化再構成の等価性を証明し、計算解に対する一貫したアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 13.440621354486906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We derive a minimax distributionally robust inverse reinforcement learning (IRL) algorithm to reconstruct the utility functions of a multi-agent sensing system. Specifically, we construct utility estimators which minimize the worst-case prediction error over a Wasserstein ambiguity set centered at noisy signal observations. We prove the equivalence between this robust estimation and a semi-infinite optimization reformulation, and we propose a consistent algorithm to compute solutions. We illustrate the efficacy of this robust IRL scheme in numerical studies to reconstruct the utility functions of a cognitive radar network from observed tracking signals.
- Abstract(参考訳): 我々は、マルチエージェントセンシングシステムの実用機能を再構築するために、分布性に頑健な逆強化学習(IRL)アルゴリズムを導出する。
具体的には,雑音信号の観測を中心としたワッサーシュタインのあいまいさに対して,最悪のケース予測誤差を最小限に抑えるユーティリティ推定器を構築する。
このロバストな推定と半無限の最適化再構成の等価性を証明し、計算解に対する一貫したアルゴリズムを提案する。
本稿では,観測された追跡信号から認知レーダネットワークの実用機能を再構築するための数値的研究において,この堅牢なIRL方式の有効性について述べる。
関連論文リスト
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
複数モーダルな)自己教師付き表現学習のための連続領域における識別確率モデル問題について検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - Optimization of Iterative Blind Detection based on Expectation Maximization and Belief Propagation [29.114100423416204]
ブロックフェーディング線形シンボルチャネルに対するブラインドシンボル検出法を提案する。
本研究では,研究予測アルゴリズムとユビキタスな信条伝搬アルゴリズムを組み合わせた共同チャネル推定・検出手法を設計する。
提案手法は,効率よく一般化したスケジュールを学習し,高信号対雑音シナリオにおけるコヒーレントBP検出よりも優れることを示す。
論文 参考訳(メタデータ) (2024-08-05T08:45:50Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent [7.6860514640178]
分散強化学習のための新しいゼロ階最適化アルゴリズムを提案する。
これにより、各エージェントはコンセンサスプロトコルを使わずに、コスト評価を独立してローカル勾配を推定できる。
論文 参考訳(メタデータ) (2021-07-26T18:11:07Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Sparse recovery by reduced variance stochastic approximation [5.672132510411465]
雑音観測によるスパース信号回復問題に対する反復2次最適化ルーチンの適用について論じる。
本稿では,Median-of-Meansのような手法を用いて,対応するソリューションの信頼性を向上する方法について述べる。
論文 参考訳(メタデータ) (2020-06-11T12:31:20Z) - Study of Diffusion Normalized Least Mean M-estimate Algorithms [0.8749675983608171]
本研究では,修正ハマー関数に基づく拡散正規化最小平均M推定アルゴリズムを提案する。
我々は,アルゴリズムの過渡的,定常的,安定的な挙動を統一的なフレームワークで解析する。
様々なインパルスノイズシナリオのシミュレーションでは、提案アルゴリズムは既存の拡散アルゴリズムよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-04-20T00:28:41Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
定常ステップサイズに対する強化学習アルゴリズムの理論解析に対する分布的アプローチを提案する。
本稿では,TD($lambda$)や$Q$-Learningのような値ベースの手法が,関数の分布空間で制約のある更新ルールを持つことを示す。
論文 参考訳(メタデータ) (2020-03-27T05:13:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。