Gate Optimization of NEQR Quantum Circuits via PPRM Transformation
- URL: http://arxiv.org/abs/2409.14629v1
- Date: Sun, 22 Sep 2024 23:40:40 GMT
- Title: Gate Optimization of NEQR Quantum Circuits via PPRM Transformation
- Authors: Shahab Iranmanesh, Hossein Aghababa, Kazim Fouladi,
- Abstract summary: This work aims to compress the quantum circuits of the Novel Enhanced Quantum Representation scheme.
The proposed transformation is estimated to reduce the exponential complexity from $O(2m)$ to $O(1.5m)$, with a compression ratio approaching 100%.
For linear complexity, the transformation is estimated to halve the run-time, with a compression ratio approaching 52%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum image representation (QIR) is a key challenge in quantum image processing (QIP) due to the large number of pixels in images, which increases the need for quantum gates and qubits. However, current quantum systems face limitations in run-time complexity and available qubits. This work aims to compress the quantum circuits of the Novel Enhanced Quantum Representation (NEQR) scheme by transforming their Exclusive-Or Sum-of-Products (ESOP) expressions into Positive Polarity Reed-Muller (PPRM) equivalents without adding ancillary qubits. Two cases of run-time complexity, exponential and linear, are considered for NEQR circuits with m controlling qubits ($m \rightarrow \infty$), depending on the decomposition of multi-controlled NOT gates. Using nonlinear regression, the proposed transformation is estimated to reduce the exponential complexity from $O(2^m)$ to $O(1.5^m)$, with a compression ratio approaching 100%. For linear complexity, the transformation is estimated to halve the run-time, with a compression ratio approaching 52%. Tests on six 256$\times$256 images show average reductions of 105.5 times for exponential cases and 2.4 times for linear cases, with average compression ratios of 99.05% and 58.91%, respectively.
Related papers
- Novel quantum circuit for image compression utilizing modified Toffoli gate and quantized transformed coefficient alongside a novel reset gate [8.402306681413087]
We introduce a modified Toffoli gate state connection using a quantized transform coefficient preparation process.
This innovative strategy streamlines circuit complexity by modifying state connection from the state connection information.
Our findings reveal that it requires an impressive 44.21 percent fewer gates than existing techniques.
arXiv Detail & Related papers (2025-02-25T03:41:28Z) - Optimization by Decoded Quantum Interferometry [43.55132675053983]
We introduce a quantum algorithm called Decoded Quantum Interferometry (DQI)
For approximating optimal fits to data over finite fields, DQI achieves a better approximation ratio than any time known to us.
We demonstrate this by benchmarking on an instance with over 30,000 variables.
arXiv Detail & Related papers (2024-08-15T17:47:42Z) - On the Constant Depth Implementation of Pauli Exponentials [49.48516314472825]
We decompose arbitrary exponentials into circuits of constant depth using $mathcalO(n)$ ancillae and two-body XX and ZZ interactions.
We prove the correctness of our approach, after introducing novel rewrite rules for circuits which benefit from qubit recycling.
arXiv Detail & Related papers (2024-08-15T17:09:08Z) - Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcing is a quantum circuit mapping algorithm that shows an average speedup of $3.7times$.
We present a quantum circuit mapping algorithm that shows an average speedup of $3.7times$ compared to the state-of-the-art scalable techniques.
arXiv Detail & Related papers (2024-07-24T14:21:41Z) - 2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [83.09117439860607]
Low-bit quantization has become widespread for compressing image super-resolution (SR) models for edge deployment.
It is notorious that low-bit quantization degrades the accuracy of SR models compared to their full-precision (FP) counterparts.
We present a dual-stage low-bit post-training quantization (PTQ) method for image super-resolution, namely 2DQuant, which achieves efficient and accurate SR under low-bit quantization.
arXiv Detail & Related papers (2024-06-10T06:06:11Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - A quantum segmentation algorithm based on local adaptive threshold for
NEQR image [7.798738743268923]
The complexity of our algorithm can be reduced to $O(n2+q)$, which is an exponential speedup compared to the classic counterparts.
The experiment is conducted on IBM Q to show the feasibility of our algorithm in the noisy intermediate-scale quantum (NISQ) era.
arXiv Detail & Related papers (2023-10-02T04:01:42Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Efficient parallelization of quantum basis state shift [0.0]
We optimize the state shift algorithm by incorporating the shift in different directions in parallel.
This provides a significant reduction in the depth of the quantum circuit in comparison to the currently known methods.
We focus on the one-dimensional and periodic shift, but note that the method can be extended to more complex cases.
arXiv Detail & Related papers (2023-04-04T11:01:08Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
We introduce AQCtensor, a novel algorithm to produce short-depth quantum circuits from Matrix Product States (MPS)
Our approach is specifically tailored to the preparation of quantum states generated from the time evolution of quantum many-body Hamiltonians.
For simulation problems on 100 qubits, we show that AQCtensor achieves at least an order of magnitude reduction in the depth of the resulting optimized circuit.
arXiv Detail & Related papers (2023-01-20T14:40:29Z) - Halving the cost of quantum multiplexed rotations [0.0]
We improve the number of $T$ gates needed for a $b$-bit approximation of a multiplexed quantum gate with $c$ controls.
Our results roughly halve the cost of state-of-art electronic structure simulations based on qubitization of double-factorized or tensor-hypercontracted representations.
arXiv Detail & Related papers (2021-10-26T06:49:44Z) - Fast algorithm for quantum polar decomposition, pretty-good
measurements, and the Procrustes problem [0.0]
We show that the problem of quantum polar decomposition has a simple and concise implementation via the quantum singular value QSVT.
We focus on the applications to pretty-good measurements, a close-to-optimal measurement to distinguish quantum states, and the quantum Procrustes problem.
arXiv Detail & Related papers (2021-06-14T17:50:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.