FUSED-Net: Enhancing Few-Shot Traffic Sign Detection with Unfrozen Parameters, Pseudo-Support Sets, Embedding Normalization, and Domain Adaptation
- URL: http://arxiv.org/abs/2409.14852v1
- Date: Mon, 23 Sep 2024 09:34:42 GMT
- Title: FUSED-Net: Enhancing Few-Shot Traffic Sign Detection with Unfrozen Parameters, Pseudo-Support Sets, Embedding Normalization, and Domain Adaptation
- Authors: Md. Atiqur Rahman, Nahian Ibn Asad, Md. Mushfiqul Haque Omi, Md. Bakhtiar Hasan, Sabbir Ahmed, Md. Hasanul Kabir,
- Abstract summary: We present 'FUSED-Net', built-upon Faster RCNN for traffic sign detection.
Unlike traditional approaches, we keep all parameters unfrozen during training, enabling FUSED-Net to learn from limited samples.
We achieve 2.4x, 2.2x, 1.5x, and 1.3x improvements of mAP in 1-shot, 3-shot, 5-shot, and 10-shot scenarios, respectively.
- Score: 2.111102681327218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic Traffic Sign Recognition is paramount in modern transportation systems, motivating several research endeavors to focus on performance improvement by utilizing large-scale datasets. As the appearance of traffic signs varies across countries, curating large-scale datasets is often impractical; and requires efficient models that can produce satisfactory performance using limited data. In this connection, we present 'FUSED-Net', built-upon Faster RCNN for traffic sign detection, enhanced by Unfrozen Parameters, Pseudo-Support Sets, Embedding Normalization, and Domain Adaptation while reducing data requirement. Unlike traditional approaches, we keep all parameters unfrozen during training, enabling FUSED-Net to learn from limited samples. The generation of a Pseudo-Support Set through data augmentation further enhances performance by compensating for the scarcity of target domain data. Additionally, Embedding Normalization is incorporated to reduce intra-class variance, standardizing feature representation. Domain Adaptation, achieved by pre-training on a diverse traffic sign dataset distinct from the target domain, improves model generalization. Evaluating FUSED-Net on the BDTSD dataset, we achieved 2.4x, 2.2x, 1.5x, and 1.3x improvements of mAP in 1-shot, 3-shot, 5-shot, and 10-shot scenarios, respectively compared to the state-of-the-art Few-Shot Object Detection (FSOD) models. Additionally, we outperform state-of-the-art works on the cross-domain FSOD benchmark under several scenarios.
Related papers
- Progressive Multi-Level Alignments for Semi-Supervised Domain Adaptation SAR Target Recognition Using Simulated Data [3.1951121258423334]
We develop an instance-prototype alignment (AIPA) strategy to push the source domain instances close to the corresponding target prototypes.
We also develop an instance-prototype alignment (AIPA) strategy to push the source domain instances close to the corresponding target prototypes.
arXiv Detail & Related papers (2024-11-07T13:53:13Z) - CMDA: Cross-Modal and Domain Adversarial Adaptation for LiDAR-Based 3D
Object Detection [14.063365469339812]
LiDAR-based 3D Object Detection methods often do not generalize well to target domains outside the source (or training) data distribution.
We introduce a novel unsupervised domain adaptation (UDA) method, called CMDA, which leverages visual semantic cues from an image modality.
We also introduce a self-training-based learning strategy, wherein a model is adversarially trained to generate domain-invariant features.
arXiv Detail & Related papers (2024-03-06T14:12:38Z) - Improving Transferability for Cross-domain Trajectory Prediction via
Neural Stochastic Differential Equation [41.09061877498741]
discrepancies exist among datasets due to external factors and data acquisition strategies.
The proficient performance of models trained on large-scale datasets has limited transferability on other small-size datasets.
We propose a method based on continuous and utilization of Neural Differential Equations (NSDE) for alleviating discrepancies.
The effectiveness of our method is validated against state-of-the-art trajectory prediction models on the popular benchmark datasets: nuScenes, Argoverse, Lyft, INTERACTION, and Open Motion dataset.
arXiv Detail & Related papers (2023-12-26T06:50:29Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - An Unsupervised Domain Adaptive Approach for Multimodal 2D Object
Detection in Adverse Weather Conditions [5.217255784808035]
We propose an unsupervised domain adaptation framework to bridge the domain gap between source and target domains.
We use a data augmentation scheme that simulates weather distortions to add domain confusion and prevent overfitting on the source data.
Experiments performed on the DENSE dataset show that our method can substantially alleviate the domain gap.
arXiv Detail & Related papers (2022-03-07T18:10:40Z) - Unsupervised Domain Adaptation for LiDAR Panoptic Segmentation [5.745037250837124]
Unsupervised Domain Adaptation (UDA) techniques are essential to fill this domain gap.
We propose AdaptLPS, a novel UDA approach for LiDAR panoptic segmentation.
We show that AdaptLPS outperforms existing UDA approaches by up to 6.41 pp in terms of the PQ score.
arXiv Detail & Related papers (2021-09-30T17:30:43Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Multi-path Neural Networks for On-device Multi-domain Visual
Classification [55.281139434736254]
This paper proposes a novel approach to automatically learn a multi-path network for multi-domain visual classification on mobile devices.
The proposed multi-path network is learned from neural architecture search by applying one reinforcement learning controller for each domain to select the best path in the super-network created from a MobileNetV3-like search space.
The determined multi-path model selectively shares parameters across domains in shared nodes while keeping domain-specific parameters within non-shared nodes in individual domain paths.
arXiv Detail & Related papers (2020-10-10T05:13:49Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.