Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting
- URL: http://arxiv.org/abs/2501.04815v1
- Date: Wed, 08 Jan 2025 20:11:09 GMT
- Title: Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting
- Authors: Kaouther Messaoud, Matthieu Cord, Alexandre Alahi,
- Abstract summary: Existing vehicle trajectory prediction models struggle with generalizability, prediction uncertainties, and handling complex interactions.
We propose Perceiver with Register queries (PerReg+), a novel trajectory prediction framework that introduces: (1) Dual-Level Representation Learning via Self-Distillation (SD) and Masked Reconstruction (MR), capturing global context and fine-grained details; (2) Enhanced Multimodality using register-based queries and pretraining, eliminating the need for clustering and suppression; and (3) Adaptive Prompt Tuning during fine-tuning, freezing the main architecture and optimizing a small number of prompts for efficient adaptation.
- Score: 107.4034346788744
- License:
- Abstract: Existing vehicle trajectory prediction models struggle with generalizability, prediction uncertainties, and handling complex interactions. It is often due to limitations like complex architectures customized for a specific dataset and inefficient multimodal handling. We propose Perceiver with Register queries (PerReg+), a novel trajectory prediction framework that introduces: (1) Dual-Level Representation Learning via Self-Distillation (SD) and Masked Reconstruction (MR), capturing global context and fine-grained details. Additionally, our approach of reconstructing segmentlevel trajectories and lane segments from masked inputs with query drop, enables effective use of contextual information and improves generalization; (2) Enhanced Multimodality using register-based queries and pretraining, eliminating the need for clustering and suppression; and (3) Adaptive Prompt Tuning during fine-tuning, freezing the main architecture and optimizing a small number of prompts for efficient adaptation. PerReg+ sets a new state-of-the-art performance on nuScenes [1], Argoverse 2 [2], and Waymo Open Motion Dataset (WOMD) [3]. Remarkable, our pretrained model reduces the error by 6.8% on smaller datasets, and multi-dataset training enhances generalization. In cross-domain tests, PerReg+ reduces B-FDE by 11.8% compared to its non-pretrained variant.
Related papers
- Zero-Shot Interactive Text-to-Image Retrieval via Diffusion-Augmented Representations [7.439049772394586]
Diffusion Augmented Retrieval (DAR) is a paradigm-shifting framework that bypasses MLLM finetuning entirely.
DAR synergizes Large Language Model (LLM)-guided query refinement with Diffusion Model (DM)-based visual synthesis to create contextually enriched intermediate representations.
arXiv Detail & Related papers (2025-01-26T03:29:18Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
Large Language Models (LLMs) demonstrate strong few-shot adaptability without requiring fine-tuning.
Current Visual Foundation Models (VFMs) require explicit fine-tuning with sufficient tuning data.
We propose a framework, LoRA Recycle, that distills a meta-LoRA from diverse pre-tuned LoRAs with a meta-learning objective.
arXiv Detail & Related papers (2024-12-03T07:25:30Z) - Exact, Tractable Gauss-Newton Optimization in Deep Reversible Architectures Reveal Poor Generalization [52.16435732772263]
Second-order optimization has been shown to accelerate the training of deep neural networks in many applications.
However, generalization properties of second-order methods are still being debated.
We show for the first time that exact Gauss-Newton (GN) updates take on a tractable form in a class of deep architectures.
arXiv Detail & Related papers (2024-11-12T17:58:40Z) - HG-Adapter: Improving Pre-Trained Heterogeneous Graph Neural Networks with Dual Adapters [53.97380482341493]
"pre-train, prompt-tuning" has demonstrated impressive performance for tuning pre-trained heterogeneous graph neural networks (HGNNs)
We propose a unified framework that combines two new adapters with potential labeled data extension to improve the generalization of pre-trained HGNN models.
arXiv Detail & Related papers (2024-11-02T06:43:54Z) - Split-Boost Neural Networks [1.1549572298362787]
We propose an innovative training strategy for feed-forward architectures - called split-boost.
Such a novel approach ultimately allows us to avoid explicitly modeling the regularization term.
The proposed strategy is tested on a real-world (anonymized) dataset within a benchmark medical insurance design problem.
arXiv Detail & Related papers (2023-09-06T17:08:57Z) - MAP: A Model-agnostic Pretraining Framework for Click-through Rate
Prediction [39.48740397029264]
We propose a Model-agnostic pretraining (MAP) framework that applies feature corruption and recovery on multi-field categorical data.
We derive two practical algorithms: masked feature prediction (RFD) and replaced feature detection (RFD)
arXiv Detail & Related papers (2023-08-03T12:55:55Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
We introduce a self-regularization framework for prompting called PromptSRC.
PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations.
arXiv Detail & Related papers (2023-07-13T17:59:35Z) - Understanding Dynamics of Nonlinear Representation Learning and Its
Application [12.697842097171119]
We study the dynamics of implicit nonlinear representation learning.
We show that the data-architecture alignment condition is sufficient for the global convergence.
We derive a new training framework, which satisfies the data-architecture alignment condition without assuming it.
arXiv Detail & Related papers (2021-06-28T16:31:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.