A novel agent with formal goal-reaching guarantees: an experimental study with a mobile robot
- URL: http://arxiv.org/abs/2409.14867v1
- Date: Mon, 23 Sep 2024 10:04:28 GMT
- Title: A novel agent with formal goal-reaching guarantees: an experimental study with a mobile robot
- Authors: Grigory Yaremenko, Dmitrii Dobriborsci, Roman Zashchitin, Ruben Contreras Maestre, Ngoc Quoc Huy Hoang, Pavel Osinenko,
- Abstract summary: Reinforcement Learning (RL) has been shown to be effective and convenient for a number of tasks in robotics.
This work presents a novel safe model-free RL agent called Critic As Lyapunov Function (CALF)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) has been shown to be effective and convenient for a number of tasks in robotics. However, it requires the exploration of a sufficiently large number of state-action pairs, many of which may be unsafe or unimportant. For instance, online model-free learning can be hazardous and inefficient in the absence of guarantees that a certain set of desired states will be reached during an episode. An increasingly common approach to address safety involves the addition of a shielding system that constrains the RL actions to a safe set of actions. In turn, a difficulty for such frameworks is how to effectively couple RL with the shielding system to make sure the exploration is not excessively restricted. This work presents a novel safe model-free RL agent called Critic As Lyapunov Function (CALF) and showcases how CALF can be used to improve upon control baselines in robotics in an efficient and convenient fashion while ensuring guarantees of stable goal reaching. The latter is a crucial part of safety, as seen generally. With CALF all state-action pairs remain explorable and yet reaching of desired goal states is formally guaranteed. Formal analysis is provided that shows the goal stabilization-ensuring properties of CALF and a set of real-world and numerical experiments with a non-holonomic wheeled mobile robot (WMR) TurtleBot3 Burger confirmed the superiority of CALF over such a well-established RL agent as proximal policy optimization (PPO), and a modified version of SARSA in a few-episode setting in terms of attained total cost.
Related papers
- Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications [73.58451824894568]
The widely adopted CMDP model constrains the risks in expectation, which makes room for dangerous behaviors in long-tail states.
In safety-critical domains, such behaviors could lead to disastrous outcomes.
We propose Objective Suppression, a novel method that adaptively suppresses the task reward maximizing objectives according to a safety critic.
arXiv Detail & Related papers (2024-02-23T23:22:06Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
This paper addresses the problem of maintaining safety during training in Reinforcement Learning (RL)
We propose a new architecture that handles the trade-off between efficient progress and safety during exploration.
arXiv Detail & Related papers (2023-12-18T16:09:43Z) - Reinforcement Learning for Safe Robot Control using Control Lyapunov
Barrier Functions [9.690491406456307]
Reinforcement learning (RL) exhibits impressive performance when managing complicated control tasks for robots.
This paper explores the control Lyapunov barrier function (CLBF) to analyze the safety and reachability solely based on data.
We also proposed the Lyapunov barrier actor-critic (LBAC) to search for a controller that satisfies the data-based approximation of the safety and reachability conditions.
arXiv Detail & Related papers (2023-05-16T20:27:02Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
We propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent.
Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control.
The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks.
arXiv Detail & Related papers (2022-12-14T03:11:25Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Safe Model-Based Reinforcement Learning with an Uncertainty-Aware
Reachability Certificate [6.581362609037603]
We build a safe reinforcement learning framework to resolve constraints required by the DRC and its corresponding shield policy.
We also devise a line search method to maintain safety and reach higher returns simultaneously while leveraging the shield policy.
arXiv Detail & Related papers (2022-10-14T06:16:53Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Safe Model-Based Reinforcement Learning Using Robust Control Barrier
Functions [43.713259595810854]
An increasingly common approach to address safety involves the addition of a safety layer that projects the RL actions onto a safe set of actions.
In this paper, we frame safety as a differentiable robust-control-barrier-function layer in a model-based RL framework.
arXiv Detail & Related papers (2021-10-11T17:00:45Z) - Lyapunov-based uncertainty-aware safe reinforcement learning [0.0]
InReinforcement learning (RL) has shown a promising performance in learning optimal policies for a variety of sequential decision-making tasks.
In many real-world RL problems, besides optimizing the main objectives, the agent is expected to satisfy a certain level of safety.
We propose a Lyapunov-based uncertainty-aware safe RL model to address these limitations.
arXiv Detail & Related papers (2021-07-29T13:08:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.