FedSlate:A Federated Deep Reinforcement Learning Recommender System
- URL: http://arxiv.org/abs/2409.14872v1
- Date: Mon, 23 Sep 2024 10:10:24 GMT
- Title: FedSlate:A Federated Deep Reinforcement Learning Recommender System
- Authors: Yongxin Deng, Xiaoyu Tan, Xihe Qiu, Yaochu Jin,
- Abstract summary: Reinforcement learning methods have been used to optimize long-term user engagement in recommendation systems.
One potential solution is to aggregate data from various platforms in a centralized location and use the aggregated data for training.
This approach raises economic and legal concerns, including increased communication costs and potential threats to user privacy.
We propose textbfFedSlate, a federated reinforcement learning recommendation algorithm that effectively utilizes information that is prohibited from being shared at a legal level.
- Score: 18.641244204682536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning methods have been used to optimize long-term user engagement in recommendation systems. However, existing reinforcement learning-based recommendation systems do not fully exploit the relevance of individual user behavior across different platforms. One potential solution is to aggregate data from various platforms in a centralized location and use the aggregated data for training. However, this approach raises economic and legal concerns, including increased communication costs and potential threats to user privacy. To address these challenges, we propose \textbf{FedSlate}, a federated reinforcement learning recommendation algorithm that effectively utilizes information that is prohibited from being shared at a legal level. We employ the SlateQ algorithm to assist FedSlate in learning users' long-term behavior and evaluating the value of recommended content. We extend the existing application scope of recommendation systems from single-user single-platform to single-user multi-platform and address cross-platform learning challenges by introducing federated learning. We use RecSim to construct a simulation environment for evaluating FedSlate and compare its performance with state-of-the-art benchmark recommendation models. Experimental results demonstrate the superior effects of FedSlate over baseline methods in various environmental settings, and FedSlate facilitates the learning of recommendation strategies in scenarios where baseline methods are completely inapplicable. Code is available at \textit{https://github.com/TianYaDY/FedSlate}.
Related papers
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
We propose a simulation framework that mimics user-recommender system interactions in a long-term scenario.
We introduce two novel metrics for quantifying the algorithm's impact on user preferences, specifically in terms of drift over time.
arXiv Detail & Related papers (2024-09-24T21:54:22Z) - CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence [55.21518669075263]
CURE4Rec is the first comprehensive benchmark for recommendation unlearning evaluation.
We consider the deeper influence of unlearning on recommendation fairness and robustness towards data with varying impact levels.
arXiv Detail & Related papers (2024-08-26T16:21:50Z) - A Comprehensive Survey on Self-Supervised Learning for Recommendation [19.916057705072177]
We provide a review of self-supervised learning frameworks designed for recommender systems, encompassing a thorough analysis of over 170 papers.
We elaborate on different self-supervised learning paradigms, namely contrastive learning, generative learning, and adversarial learning, so as to present technical details of how SSL enhances recommender systems in various contexts.
arXiv Detail & Related papers (2024-04-04T10:45:23Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - On the resilience of Collaborative Learning-based Recommender Systems Against Community Detection Attack [1.9093042949944972]
Collaborative-learning-based recommender systems emerged following the success of collaborative learning techniques such as Federated Learning (FL) and Gossip Learning (GL)
In these systems, users participate in the training of a recommender system while maintaining their history of consumed items on their devices.
Recent studies have revealed that collaborative learning can be vulnerable to various privacy attacks.
arXiv Detail & Related papers (2023-06-15T08:02:07Z) - Semi-decentralized Federated Ego Graph Learning for Recommendation [58.21409625065663]
We propose a semi-decentralized federated ego graph learning framework for on-device recommendations, named SemiDFEGL.
The proposed framework is model-agnostic, meaning that it could be seamlessly integrated with existing graph neural network-based recommendation methods and privacy protection techniques.
arXiv Detail & Related papers (2023-02-10T03:57:45Z) - FedGRec: Federated Graph Recommender System with Lazy Update of Latent
Embeddings [108.77460689459247]
We propose a Federated Graph Recommender System (FedGRec) to mitigate privacy concerns.
In our system, users and the server explicitly store latent embeddings for users and items, where the latent embeddings summarize different orders of indirect user-item interactions.
We perform extensive empirical evaluations to verify the efficacy of using latent embeddings as a proxy of missing interaction graph.
arXiv Detail & Related papers (2022-10-25T01:08:20Z) - Generative Inverse Deep Reinforcement Learning for Online Recommendation [62.09946317831129]
We propose a novel inverse reinforcement learning approach, namely InvRec, for online recommendation.
InvRec extracts the reward function from user's behaviors automatically, for online recommendation.
arXiv Detail & Related papers (2020-11-04T12:12:25Z) - How to Put Users in Control of their Data in Federated Top-N
Recommendation with Learning to Rank [16.256897977543982]
We present FPL, an architecture in which users collaborate in training a central factorization model while controlling the amount of sensitive data leaving their devices.
The proposed approach implements pair-wise learning-to-rank optimization by following the Federated Learning principles.
arXiv Detail & Related papers (2020-08-17T10:13:15Z) - Recommendation system using a deep learning and graph analysis approach [1.2183405753834562]
We propose a novel recommendation method based on Matrix Factorization and graph analysis methods.
In addition, we leverage deep Autoencoders to initialize users and items latent factors, and deep embedding method gathers users' latent factors from the user trust graph.
arXiv Detail & Related papers (2020-04-17T08:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.