On The Specialization of Neural Modules
- URL: http://arxiv.org/abs/2409.14981v1
- Date: Mon, 23 Sep 2024 12:58:11 GMT
- Title: On The Specialization of Neural Modules
- Authors: Devon Jarvis, Richard Klein, Benjamin Rosman, Andrew M. Saxe,
- Abstract summary: We study the ability of network modules to specialize to useful structures in a dataset and achieve systematic generalization.
Our results shed light on the difficulty of module specialization, what is required for modules to successfully specialize, and the necessity of modular architectures to achieve systematicity.
- Score: 16.83151955540625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A number of machine learning models have been proposed with the goal of achieving systematic generalization: the ability to reason about new situations by combining aspects of previous experiences. These models leverage compositional architectures which aim to learn specialized modules dedicated to structures in a task that can be composed to solve novel problems with similar structures. While the compositionality of these architectures is guaranteed by design, the modules specializing is not. Here we theoretically study the ability of network modules to specialize to useful structures in a dataset and achieve systematic generalization. To this end we introduce a minimal space of datasets motivated by practical systematic generalization benchmarks. From this space of datasets we present a mathematical definition of systematicity and study the learning dynamics of linear neural modules when solving components of the task. Our results shed light on the difficulty of module specialization, what is required for modules to successfully specialize, and the necessity of modular architectures to achieve systematicity. Finally, we confirm that the theoretical results in our tractable setting generalize to more complex datasets and non-linear architectures.
Related papers
- Configurable Foundation Models: Building LLMs from a Modular Perspective [115.63847606634268]
A growing tendency to decompose LLMs into numerous functional modules allows for inference with part of modules and dynamic assembly of modules to tackle complex tasks.
We coin the term brick to represent each functional module, designating the modularized structure as customizable foundation models.
We present four brick-oriented operations: retrieval and routing, merging, updating, and growing.
We find that the FFN layers follow modular patterns with functional specialization of neurons and functional neuron partitions.
arXiv Detail & Related papers (2024-09-04T17:01:02Z) - Discovering modular solutions that generalize compositionally [55.46688816816882]
We show that identification up to linear transformation purely from demonstrations is possible without having to learn an exponential number of module combinations.
We further demonstrate empirically that meta-learning from finite data can discover modular policies that generalize compositionally in a number of complex environments.
arXiv Detail & Related papers (2023-12-22T16:33:50Z) - Modular Deep Learning [120.36599591042908]
Transfer learning has recently become the dominant paradigm of machine learning.
It remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference.
Modular deep learning has emerged as a promising solution to these challenges.
arXiv Detail & Related papers (2023-02-22T18:11:25Z) - Is a Modular Architecture Enough? [80.32451720642209]
We provide a thorough assessment of common modular architectures, through the lens of simple and known modular data distributions.
We highlight the benefits of modularity and sparsity and reveal insights on the challenges faced while optimizing modular systems.
arXiv Detail & Related papers (2022-06-06T16:12:06Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Dynamics of specialization in neural modules under resource constraints [2.9465623430708905]
We use artificial neural networks to test the hypothesis that structural modularity is sufficient to guarantee functional specialization.
We conclude that a static notion of specialization, based on structural modularity, is likely too simple a framework for understanding intelligence in situations of real-world complexity.
arXiv Detail & Related papers (2021-06-04T17:39:36Z) - Iterated learning for emergent systematicity in VQA [3.977144385787228]
neural module networks have an architectural bias towards compositionality.
When learning layouts and modules jointly, compositionality does not arise automatically and an explicit pressure is necessary for the emergence of layouts exhibiting the right structure.
We propose to address this problem using iterated learning, a cognitive science theory of the emergence of compositional languages in nature.
arXiv Detail & Related papers (2021-05-03T18:44:06Z) - XY Neural Networks [0.0]
We show how to build complex structures for machine learning based on the XY model's nonlinear blocks.
The final target is to reproduce the deep learning architectures, which can perform complicated tasks.
arXiv Detail & Related papers (2021-03-31T17:47:10Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.