Cross Branch Feature Fusion Decoder for Consistency Regularization-based Semi-Supervised Change Detection
- URL: http://arxiv.org/abs/2409.15021v1
- Date: Mon, 23 Sep 2024 13:47:59 GMT
- Title: Cross Branch Feature Fusion Decoder for Consistency Regularization-based Semi-Supervised Change Detection
- Authors: Yan Xing, Qi'ao Xu, Jingcheng Zeng, Rui Huang, Sihua Gao, Weifeng Xu, Yuxiang Zhang, Wei Fan,
- Abstract summary: We introduce a new decoder called Cross Branch Feature Fusion CBFF.
It combines the strengths of both local convolutional branch and global transformer branch.
Using CBFF, we build our SSCD model based on a strong-to-weak consistency strategy.
- Score: 9.147851499947228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised change detection (SSCD) utilizes partially labeled data and a large amount of unlabeled data to detect changes. However, the transformer-based SSCD network does not perform as well as the convolution-based SSCD network due to the lack of labeled data. To overcome this limitation, we introduce a new decoder called Cross Branch Feature Fusion CBFF, which combines the strengths of both local convolutional branch and global transformer branch. The convolutional branch is easy to learn and can produce high-quality features with a small amount of labeled data. The transformer branch, on the other hand, can extract global context features but is hard to learn without a lot of labeled data. Using CBFF, we build our SSCD model based on a strong-to-weak consistency strategy. Through comprehensive experiments on WHU-CD and LEVIR-CD datasets, we have demonstrated the superiority of our method over seven state-of-the-art SSCD methods.
Related papers
- ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - Pixel-Level Change Detection Pseudo-Label Learning for Remote Sensing Change Captioning [28.3763053922823]
Methods for Remote Sensing Image Change Captioning (RSICC) perform well in simple scenes but exhibit poorer performance in complex scenes.
We believe pixel-level CD is significant for describing the differences between images through language.
Our method achieves state-of-the-art performance and validate that learning pixel-level CD pseudo-labels significantly contributes to change captioning.
arXiv Detail & Related papers (2023-12-23T17:58:48Z) - Exchanging Dual Encoder-Decoder: A New Strategy for Change Detection
with Semantic Guidance and Spatial Localization [10.059696915598392]
We propose a new strategy with an exchanging dual encoder-decoder structure for binary change detection with semantic guidance and spatial localization.
We build a binary change detection model based on this strategy, and then validate and compare it with 18 state-of-the-art change detection methods on six datasets.
arXiv Detail & Related papers (2023-11-19T11:30:43Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
We propose a novel Transformer-based learning framework named TransY-Net for remote sensing image CD.
It improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner.
Our proposed method achieves a new state-of-the-art performance on four optical and two SAR image CD benchmarks.
arXiv Detail & Related papers (2023-10-22T07:42:19Z) - Remote Sensing Change Detection With Transformers Trained from Scratch [62.96911491252686]
transformer-based change detection (CD) approaches either employ a pre-trained model trained on large-scale image classification ImageNet dataset or rely on first pre-training on another CD dataset and then fine-tuning on the target benchmark.
We develop an end-to-end CD approach with transformers that is trained from scratch and yet achieves state-of-the-art performance on four public benchmarks.
arXiv Detail & Related papers (2023-04-13T17:57:54Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
Remote Sensing Change Detection (RS-CD) aims to detect relevant changes from Multi-Temporal Remote Sensing Images (MT-RSIs)
The performance of existing RS-CD methods is attributed to training on large annotated datasets.
This paper proposes an unsupervised CD method based on deep metric learning that can deal with both of these issues.
arXiv Detail & Related papers (2023-03-16T17:52:45Z) - SoftMatch Distance: A Novel Distance for Weakly-Supervised Trend Change
Detection in Bi-Temporal Images [45.138953422578574]
General change detection (GCD) and semantic change detection (SCD) are common methods for identifying changes and distinguishing object categories involved in those changes, respectively.
We propose a novel solution that intuitively dividing changes into three trends (appear'', disappear'' and transform'') instead of semantic categories, named it trend change detection (TCD) in this paper.
It offers more detailed change information than GCD, while requiring less manual annotation cost than SCD.
arXiv Detail & Related papers (2023-03-08T17:23:18Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
Current deepfake generation methods leave discriminative artifacts in the frequency spectrum of fake images and videos.
We present a novel approach, termed as MD-CSDNetwork, for combining the features in the spatial and frequency domains to mine a shared discriminative representation.
arXiv Detail & Related papers (2021-09-15T14:11:53Z) - DSDANet: Deep Siamese Domain Adaptation Convolutional Neural Network for
Cross-domain Change Detection [44.05317423742678]
We propose a novel deep siamese domain adaptation convolutional neural network architecture for cross-domain change detection.
To the best of our knowledge, it is the first time that such a domain adaptation-based deep network is proposed for change detection.
arXiv Detail & Related papers (2020-06-16T15:00:54Z) - Searching Central Difference Convolutional Networks for Face
Anti-Spoofing [68.77468465774267]
Face anti-spoofing (FAS) plays a vital role in face recognition systems.
Most state-of-the-art FAS methods rely on stacked convolutions and expert-designed network.
Here we propose a novel frame level FAS method based on Central Difference Convolution (CDC)
arXiv Detail & Related papers (2020-03-09T12:48:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.