TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images
- URL: http://arxiv.org/abs/2310.14214v1
- Date: Sun, 22 Oct 2023 07:42:19 GMT
- Title: TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images
- Authors: Tianyu Yan and Zifu Wan and Pingping Zhang and Gong Cheng and Huchuan
Lu
- Abstract summary: We propose a novel Transformer-based learning framework named TransY-Net for remote sensing image CD.
It improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner.
Our proposed method achieves a new state-of-the-art performance on four optical and two SAR image CD benchmarks.
- Score: 64.63004710817239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the remote sensing field, Change Detection (CD) aims to identify and
localize the changed regions from dual-phase images over the same places.
Recently, it has achieved great progress with the advances of deep learning.
However, current methods generally deliver incomplete CD regions and irregular
CD boundaries due to the limited representation ability of the extracted visual
features. To relieve these issues, in this work we propose a novel
Transformer-based learning framework named TransY-Net for remote sensing image
CD, which improves the feature extraction from a global view and combines
multi-level visual features in a pyramid manner. More specifically, the
proposed framework first utilizes the advantages of Transformers in long-range
dependency modeling. It can help to learn more discriminative global-level
features and obtain complete CD regions. Then, we introduce a novel pyramid
structure to aggregate multi-level visual features from Transformers for
feature enhancement. The pyramid structure grafted with a Progressive Attention
Module (PAM) can improve the feature representation ability with additional
inter-dependencies through spatial and channel attentions. Finally, to better
train the whole framework, we utilize the deeply-supervised learning with
multiple boundary-aware loss functions. Extensive experiments demonstrate that
our proposed method achieves a new state-of-the-art performance on four optical
and two SAR image CD benchmarks. The source code is released at
https://github.com/Drchip61/TransYNet.
Related papers
- A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions.
We introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies.
arXiv Detail & Related papers (2024-08-31T10:03:19Z) - EfficientCD: A New Strategy For Change Detection Based With Bi-temporal Layers Exchanged [3.3885253104046993]
We propose a novel deep learning framework named EfficientCD for remote sensing image change detection.
The framework employs EfficientNet as its backbone network for feature extraction.
The EfficientCD has been experimentally validated on four remote sensing datasets.
arXiv Detail & Related papers (2024-07-22T19:11:50Z) - Spatial-frequency Dual-Domain Feature Fusion Network for Low-Light Remote Sensing Image Enhancement [49.15531684596958]
We propose a Dual-Domain Feature Fusion Network (DFFN) for low-light remote sensing image enhancement.
The first phase learns amplitude information to restore image brightness, and the second phase learns phase information to refine details.
We have constructed two dark light remote sensing datasets to address the current lack of datasets in dark light remote sensing image enhancement.
arXiv Detail & Related papers (2024-04-26T13:21:31Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - ObjFormer: Learning Land-Cover Changes From Paired OSM Data and Optical High-Resolution Imagery via Object-Guided Transformer [31.46969412692045]
This paper pioneers the direct detection of land-cover changes utilizing paired OSM data and optical imagery.
We propose an object-guided Transformer (Former) by naturally combining the object-based image analysis (OBIA) technique with the advanced vision Transformer architecture.
A large-scale benchmark dataset called OpenMapCD is constructed to conduct detailed experiments.
arXiv Detail & Related papers (2023-10-04T09:26:44Z) - Effective Image Tampering Localization via Enhanced Transformer and
Co-attention Fusion [5.691973573807887]
We propose an effective image tampering localization network (EITLNet) based on a two-branch enhanced transformer encoder.
The features extracted from RGB and noise streams are fused effectively by the coordinate attention-based fusion module.
arXiv Detail & Related papers (2023-09-17T15:43:06Z) - MCTNet: A Multi-Scale CNN-Transformer Network for Change Detection in
Optical Remote Sensing Images [7.764449276074902]
We propose a hybrid network based on multi-scale CNN-transformer structure, termed MCTNet.
We show that our MCTNet achieves better detection performance than existing state-of-the-art CD methods.
arXiv Detail & Related papers (2022-10-14T07:54:28Z) - Fully Transformer Network for Change Detection of Remote Sensing Images [22.989324947501014]
We propose a novel learning framework named Fully Transformer Network (FTN) for remote sensing image CD.
It improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner.
Our proposed method achieves a new state-of-the-art performance on four public CD benchmarks.
arXiv Detail & Related papers (2022-10-03T08:21:25Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
arXiv Detail & Related papers (2022-03-20T02:59:51Z) - HAT: Hierarchical Aggregation Transformers for Person Re-identification [87.02828084991062]
We take advantages of both CNNs and Transformers for image-based person Re-ID with high performance.
Work is the first to take advantages of both CNNs and Transformers for image-based person Re-ID.
arXiv Detail & Related papers (2021-07-13T09:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.