論文の概要: Region Mixup
- arxiv url: http://arxiv.org/abs/2409.15028v1
- Date: Mon, 23 Sep 2024 13:55:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 14:53:59.777850
- Title: Region Mixup
- Title(参考訳): 地域混在
- Authors: Saptarshi Saha, Utpal Garain,
- Abstract要約: 本稿では,Mixupの簡易拡張について紹介する(Zhangら,視覚認識タスクにおける一般化データ拡張)。
画像全体をブレンドするバニラ混合法とは異なり、本手法は複数の画像からの領域の組み合わせに焦点を当てる。
- 参考スコア(独自算出の注目度): 1.8876415010297893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a simple extension of mixup (Zhang et al., 2018) data augmentation to enhance generalization in visual recognition tasks. Unlike the vanilla mixup method, which blends entire images, our approach focuses on combining regions from multiple images.
- Abstract(参考訳): 本稿では、視覚認識タスクの一般化を促進するために、mixup(Zhang et al , 2018)データ拡張の簡易な拡張を提案する。
画像全体をブレンドするバニラ混合法とは異なり、本手法は複数の画像からの領域の組み合わせに焦点を当てる。
関連論文リスト
- FreeCompose: Generic Zero-Shot Image Composition with Diffusion Prior [50.0535198082903]
我々は,複数の入力イメージを単一のコヒーレントなイメージに統合する,新しい画像合成手法を提案する。
本稿では, 大規模事前学習拡散モデルに内在する強力な生成的前駆体を利用して, 汎用画像合成を実現する可能性を示す。
論文 参考訳(メタデータ) (2024-07-06T03:35:43Z) - Generative Powers of Ten [60.6740997942711]
本稿では,複数の画像スケールにまたがる一貫したコンテンツを生成するために,テキスト・ツー・イメージ・モデルを用いる手法を提案する。
マルチスケール拡散サンプリングを共同で行うことで実現した。
本手法は従来の超解像法よりも深いズームレベルを実現する。
論文 参考訳(メタデータ) (2023-12-04T18:59:25Z) - SpliceMix: A Cross-scale and Semantic Blending Augmentation Strategy for
Multi-label Image Classification [46.8141860303439]
マルチラベル画像分類,すなわちSpliceMixの簡易かつ効果的な拡張戦略を提案する。
本手法の「スプライス」は,1) 混合画像は, 混合に係わる画像のセマンティクスを, 共起バイアスを緩和するためのオブジェクト欠陥を伴わずにブレンドするグリッドの形で, 縮小された画像のスプライスであり, 2) 混合画像と元のミニバッチをスプリスして, 異なるスケールの画像を同時にトレーニングに寄与するSpliceMixed mini-batchを形成する。
論文 参考訳(メタデータ) (2023-11-26T05:45:27Z) - MiAMix: Enhancing Image Classification through a Multi-stage Augmented
Mixed Sample Data Augmentation Method [0.5919433278490629]
マルチステージAugmented Mixupの略であるMiAMixという新しいミックスアップ手法を提案する。
MiAMixは、画像強化をミックスアップフレームワークに統合し、複数の多様化ミキシング法を同時に利用し、ミキシングマスク増強法をランダムに選択することでミキシング方法を改善する。
近年の手法では、サリエンシ情報を利用し、MiAMixは計算効率も向上し、オーバーヘッドを減らし、既存のトレーニングパイプラインに容易に統合できるようになっている。
論文 参考訳(メタデータ) (2023-08-05T06:29:46Z) - GuidedMixup: An Efficient Mixup Strategy Guided by Saliency Maps [6.396288020763144]
本稿では,計算オーバーヘッドの少ない混合画像における局所領域の維持を目的とした GuidedMixup を提案する。
我々は,ペア画像の健全な領域の競合を最小限に抑えるために,効率的なペアリングアルゴリズムを開発した。
いくつかのデータセットの実験では、 GuidedMixupがオーバヘッドの増大と一般化のパフォーマンスのトレードオフとして優れていることが示されている。
論文 参考訳(メタデータ) (2023-06-29T00:55:51Z) - Multi-modal Gated Mixture of Local-to-Global Experts for Dynamic Image
Fusion [59.19469551774703]
赤外線と可視画像の融合は,複数の情報源からの包括的情報を統合して,様々な作業において優れた性能を実現することを目的としている。
局所-言語の専門家によるマルチモーダルゲート混合を用いた動的画像融合フレームワークを提案する。
本モデルは,Mixture of Local Experts (MoLE) とMixture of Global Experts (MoGE) から構成される。
論文 参考訳(メタデータ) (2023-02-02T20:06:58Z) - MixupE: Understanding and Improving Mixup from Directional Derivative
Perspective [86.06981860668424]
理論上は、バニラ・ミックスアップよりも優れた一般化性能を実現するために、Mixupの改良版を提案する。
提案手法は,様々なアーキテクチャを用いて,複数のデータセットにまたがるMixupを改善した。
論文 参考訳(メタデータ) (2022-12-27T07:03:52Z) - Bridging the Visual Gap: Wide-Range Image Blending [16.464837892640812]
広域画像ブレンドを実現するための効果的なディープラーニングモデルを提案する。
提案手法が視覚的に魅力的な結果をもたらすことを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-28T15:07:45Z) - SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained
Data [124.95585891086894]
提案はSemantically Proportional Mixing(SnapMix)と呼ばれる
クラスアクティベーションマップ(CAM)を利用して、きめ細かいデータを強化する際にラベルノイズを低減します。
本手法は既存の混合型アプローチを一貫して上回っている。
論文 参考訳(メタデータ) (2020-12-09T03:37:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。