Scaling Laws of Decoder-Only Models on the Multilingual Machine Translation Task
- URL: http://arxiv.org/abs/2409.15051v1
- Date: Mon, 23 Sep 2024 14:26:01 GMT
- Title: Scaling Laws of Decoder-Only Models on the Multilingual Machine Translation Task
- Authors: Gaëtan Caillaut, Raheel Qader, Mariam Nakhlé, Jingshu Liu, Jean-Gabriel Barthélemy,
- Abstract summary: We study the scaling laws of decoder-only models on the multilingual and multidomain translation task.
We show that the loss of decoder-only models can be estimated using a scaling law similar to the one discovered for large language models.
We also show that scaling the depth and the width of a model lead to similar test loss improvements, but with different impact on the model's efficiency.
- Score: 1.9107347888374506
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent studies have showcased remarkable capabilities of decoder-only models in many NLP tasks, including translation. Yet, the machine translation field has been largely dominated by encoder-decoder models based on the Transformer architecture. As a consequence, scaling laws of encoder-decoder models for neural machine translation have already been well studied, but decoder-only models have received less attention. This work explores the scaling laws of decoder-only models on the multilingual and multidomain translation task. We trained a collection of six decoder-only models, ranging from 70M to 7B parameters, on a sentence-level, multilingual and multidomain dataset. We conducted a series of experiments showing that the loss of decoder-only models can be estimated using a scaling law similar to the one discovered for large language models, but we also show that this scaling law has difficulties to generalize to too large models or to a different data distribution. We also study different scaling methods and show that scaling the depth and the width of a model lead to similar test loss improvements, but with different impact on the model's efficiency.
Related papers
- Efficient Machine Translation with a BiLSTM-Attention Approach [0.0]
This paper proposes a novel Seq2Seq model aimed at improving translation quality while reducing the storage space required by the model.
The model employs a Bidirectional Long Short-Term Memory network (Bi-LSTM) as the encoder to capture the context information of the input sequence.
Compared to the current mainstream Transformer model, our model achieves superior performance on the WMT14 machine translation dataset.
arXiv Detail & Related papers (2024-10-29T01:12:50Z) - Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining [4.38070902806635]
We set up a benchmark for languages Croatian, Serbian, Bosnian and Montenegrin.
We show that comparable performance to dedicated from-scratch models can be obtained by additionally pretraining available multilingual models.
We also show that neighboring languages, in our case Slovenian, can be included in the additional pretraining with little to no loss in the performance of the final model.
arXiv Detail & Related papers (2024-04-08T11:55:44Z) - Extrapolating Multilingual Understanding Models as Multilingual
Generators [82.1355802012414]
This paper explores methods to empower multilingual understanding models the generation abilities to get a unified model.
We propose a textbfSemantic-textbfGuided textbfAlignment-then-Denoising (SGA) approach to adapt an encoder to a multilingual generator with a small number of new parameters.
arXiv Detail & Related papers (2023-05-22T15:33:21Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
The seq2seq task aims at generating the target sequence based on the given input source sequence.
Traditionally, most of the seq2seq task is resolved by an encoder to encode the source sequence and a decoder to generate the target text.
Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task.
arXiv Detail & Related papers (2023-04-08T15:44:29Z) - Is Encoder-Decoder Redundant for Neural Machine Translation? [44.37101354412253]
encoder-decoder architecture is still the de facto neural network architecture for state-of-the-art models.
In this work, we experiment with bilingual translation, translation with additional target monolingual data, and multilingual translation.
This alternative approach performs on par with the baseline encoder-decoder Transformer, suggesting that an encoder-decoder architecture might be redundant for neural machine translation.
arXiv Detail & Related papers (2022-10-21T08:33:55Z) - ED2LM: Encoder-Decoder to Language Model for Faster Document Re-ranking
Inference [70.36083572306839]
This paper proposes a new training and inference paradigm for re-ranking.
We finetune a pretrained encoder-decoder model using in the form of document to query generation.
We show that this encoder-decoder architecture can be decomposed into a decoder-only language model during inference.
arXiv Detail & Related papers (2022-04-25T06:26:29Z) - What Language Model Architecture and Pretraining Objective Work Best for
Zero-Shot Generalization? [50.84738303888189]
We present a large-scale evaluation of modeling choices and their impact on zero-shot generalization.
We train models with over 5 billion parameters for more than 170 billion tokens.
We find that pretrained causal decoder models can be efficiently adapted into non-causal decoder models.
arXiv Detail & Related papers (2022-04-12T14:19:49Z) - Examining Scaling and Transfer of Language Model Architectures for
Machine Translation [51.69212730675345]
Language models (LMs) process sequences in a single stack of layers, and encoder-decoder models (EncDec) utilize separate layer stacks for input and output processing.
In machine translation, EncDec has long been the favoured approach, but with few studies investigating the performance of LMs.
arXiv Detail & Related papers (2022-02-01T16:20:15Z) - Breaking Down Multilingual Machine Translation [74.24795388967907]
We show that multilingual training is beneficial to encoders in general, while it only benefits decoders for low-resource languages (LRLs)
Our many-to-one models for high-resource languages and one-to-many models for LRLs outperform the best results reported by Aharoni et al.
arXiv Detail & Related papers (2021-10-15T14:57:12Z) - Universal Vector Neural Machine Translation With Effective Attention [0.0]
We propose a singular model for Neural Machine Translation based on encoder-decoder models.
We introduce a neutral/universal model representation that can be used to predict more than one language.
arXiv Detail & Related papers (2020-06-09T01:13:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.