Decoder-Only LLMs are Better Controllers for Diffusion Models
- URL: http://arxiv.org/abs/2502.04412v1
- Date: Thu, 06 Feb 2025 12:17:35 GMT
- Title: Decoder-Only LLMs are Better Controllers for Diffusion Models
- Authors: Ziyi Dong, Yao Xiao, Pengxu Wei, Liang Lin,
- Abstract summary: We propose to enhance text-to-image diffusion models by borrowing the strength of semantic understanding from large language models.
Our adapter module is superior to the stat-of-the-art models in terms of text-to-image generation quality and reliability.
- Score: 63.22040456010123
- License:
- Abstract: Groundbreaking advancements in text-to-image generation have recently been achieved with the emergence of diffusion models. These models exhibit a remarkable ability to generate highly artistic and intricately detailed images based on textual prompts. However, obtaining desired generation outcomes often necessitates repetitive trials of manipulating text prompts just like casting spells on a magic mirror, and the reason behind that is the limited capability of semantic understanding inherent in current image generation models. Specifically, existing diffusion models encode the text prompt input with a pre-trained encoder structure, which is usually trained on a limited number of image-caption pairs. The state-of-the-art large language models (LLMs) based on the decoder-only structure have shown a powerful semantic understanding capability as their architectures are more suitable for training on very large-scale unlabeled data. In this work, we propose to enhance text-to-image diffusion models by borrowing the strength of semantic understanding from large language models, and devise a simple yet effective adapter to allow the diffusion models to be compatible with the decoder-only structure. Meanwhile, we also provide a supporting theoretical analysis with various architectures (e.g., encoder-only, encoder-decoder, and decoder-only), and conduct extensive empirical evaluations to verify its effectiveness. The experimental results show that the enhanced models with our adapter module are superior to the stat-of-the-art models in terms of text-to-image generation quality and reliability.
Related papers
- FLIER: Few-shot Language Image Models Embedded with Latent Representations [2.443383032451177]
Few-shot Language Image model embedded with latent representations (FLIER) for image recognition.
We first generate images and corresponding latent representations via Stable Diffusion with the textual inputs from GPT-3.
With latent representations as "models-understandable pixels", we introduce a flexible convolutional neural network with two convolutional layers to be the latent encoder.
arXiv Detail & Related papers (2024-10-10T06:27:46Z) - ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models and Large Language Models [52.23899502520261]
We introduce a novel framework named, ARTIST, which incorporates a dedicated textual diffusion model to focus on the learning of text structures specifically.
We finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model.
This disentangled architecture design and training strategy significantly enhance the text rendering ability of the diffusion models for text-rich image generation.
arXiv Detail & Related papers (2024-06-17T19:31:24Z) - Exploring the Role of Large Language Models in Prompt Encoding for Diffusion Models [42.891427362223176]
Large language models (LLMs) based on decoder-only transformers have demonstrated superior text understanding capabilities.
We propose a novel framework to fully harness the capabilities of LLMs.
We further design an LLM-Infused Diffusion Transformer (LI-DiT) based on the framework.
arXiv Detail & Related papers (2024-06-17T17:59:43Z) - TextCraftor: Your Text Encoder Can be Image Quality Controller [65.27457900325462]
Diffusion-based text-to-image generative models, e.g., Stable Diffusion, have revolutionized the field of content generation.
We propose a proposed fine-tuning approach, TextCraftor, to enhance the performance of text-to-image diffusion models.
arXiv Detail & Related papers (2024-03-27T19:52:55Z) - De-Diffusion Makes Text a Strong Cross-Modal Interface [33.90004746543745]
We employ an autoencoder that uses a pre-trained text-to-image diffusion model for decoding.
Experiments validate the precision and comprehensiveness of De-Diffusion text representing images.
A single De-Diffusion model can generalize to provide transferable prompts for different text-to-image tools.
arXiv Detail & Related papers (2023-11-01T16:12:40Z) - Few-shot Action Recognition with Captioning Foundation Models [61.40271046233581]
CapFSAR is a framework to exploit knowledge of multimodal models without manually annotating text.
Visual-text aggregation module based on Transformer is further designed to incorporate cross-modal-temporal complementary information.
experiments on multiple standard few-shot benchmarks demonstrate that the proposed CapFSAR performs favorably against existing methods.
arXiv Detail & Related papers (2023-10-16T07:08:39Z) - BLIP-Diffusion: Pre-trained Subject Representation for Controllable
Text-to-Image Generation and Editing [73.74570290836152]
BLIP-Diffusion is a new subject-driven image generation model that supports multimodal control.
Unlike other subject-driven generation models, BLIP-Diffusion introduces a new multimodal encoder which is pre-trained to provide subject representation.
arXiv Detail & Related papers (2023-05-24T04:51:04Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
We propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models.
Our approach can make text-to-image diffusion models easier to use with better user experience.
arXiv Detail & Related papers (2023-05-09T05:48:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.