SHFL: Secure Hierarchical Federated Learning Framework for Edge Networks
- URL: http://arxiv.org/abs/2409.15067v1
- Date: Mon, 23 Sep 2024 14:38:20 GMT
- Title: SHFL: Secure Hierarchical Federated Learning Framework for Edge Networks
- Authors: Omid Tavallaie, Kanchana Thilakarathna, Suranga Seneviratne, Aruna Seneviratne, Albert Y. Zomaya,
- Abstract summary: Federated Learning (FL) is a distributed machine learning paradigm designed for privacy-sensitive applications that run on resource-constrained devices with non-Identically and Independently Distributed (IID) data.
Traditional FL frameworks adopt the client-server model with a single-level aggregation process, where the server builds the global model by aggregating all trained local models received from client devices.
- Score: 26.482930943380918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a distributed machine learning paradigm designed for privacy-sensitive applications that run on resource-constrained devices with non-Identically and Independently Distributed (IID) data. Traditional FL frameworks adopt the client-server model with a single-level aggregation (AGR) process, where the server builds the global model by aggregating all trained local models received from client devices. However, this conventional approach encounters challenges, including susceptibility to model/data poisoning attacks. In recent years, advancements in the Internet of Things (IoT) and edge computing have enabled the development of hierarchical FL systems with a two-level AGR process running at edge and cloud servers. In this paper, we propose a Secure Hierarchical FL (SHFL) framework to address poisoning attacks in hierarchical edge networks. By aggregating trained models at the edge, SHFL employs two novel methods to address model/data poisoning attacks in the presence of client adversaries: 1) a client selection algorithm running at the edge for choosing IoT devices to participate in training, and 2) a model AGR method designed based on convex optimization theory to reduce the impact of edge models from networks with adversaries in the process of computing the global model (at the cloud level). The evaluation results reveal that compared to state-of-the-art methods, SHFL significantly increases the maximum accuracy achieved by the global model in the presence of client adversaries applying model/data poisoning attacks.
Related papers
- ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning (FL) is a distributed learning framework designed for privacy-aware applications.
Traditional FL approaches risk exposing sensitive client data when plain model updates are transmitted to the server.
Google's Secure Aggregation (SecAgg) protocol addresses this threat by employing a double-masking technique.
We propose ACCESS-FL, a communication-and-computation-efficient secure aggregation method.
arXiv Detail & Related papers (2024-09-03T09:03:38Z) - Honest Score Client Selection Scheme: Preventing Federated Learning Label Flipping Attacks in Non-IID Scenarios [27.36889020561564]
Federated Learning (FL) is a promising technology that enables multiple actors to build a joint model without sharing their raw data.
The distributed nature makes FL vulnerable to various poisoning attacks, including model poisoning attacks and data poisoning attacks.
In this paper, we focus on the most representative data poisoning attack - "label flipping attack" and monitor its effectiveness when attacking the existing FL methods.
arXiv Detail & Related papers (2023-11-10T02:07:41Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - Hierarchical Personalized Federated Learning Over Massive Mobile Edge
Computing Networks [95.39148209543175]
We propose hierarchical PFL (HPFL), an algorithm for deploying PFL over massive MEC networks.
HPFL combines the objectives of training loss minimization and round latency minimization while jointly determining the optimal bandwidth allocation.
arXiv Detail & Related papers (2023-03-19T06:00:05Z) - Stochastic Coded Federated Learning: Theoretical Analysis and Incentive
Mechanism Design [18.675244280002428]
We propose a novel FL framework named coded federated learning (SCFL) that leverages coded computing techniques.
In SCFL, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding noise to the projected local dataset.
We show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods.
arXiv Detail & Related papers (2022-11-08T09:58:36Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
cooperative edge learning (CE-FL) is a distributed machine learning architecture.
We model the processes taken during CE-FL, and conduct analytical training.
We show the effectiveness of our framework with the data collected from a real-world testbed.
arXiv Detail & Related papers (2022-03-26T00:41:57Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z) - Towards Communication-efficient and Attack-Resistant Federated Edge
Learning for Industrial Internet of Things [40.20432511421245]
Federated Edge Learning (FEL) allows edge nodes to train a global deep learning model collaboratively for edge computing in the Industrial Internet of Things (IIoT)
FEL faces two critical challenges: communication overhead and data privacy.
We propose a communication-efficient and privacy-enhanced asynchronous FEL framework for edge computing in IIoT.
arXiv Detail & Related papers (2020-12-08T14:11:32Z) - RC-SSFL: Towards Robust and Communication-efficient Semi-supervised
Federated Learning System [25.84191221776459]
Federated Learning (FL) is an emerging decentralized artificial intelligence paradigm.
Current systems rely heavily on a strong assumption: all clients have a wealth of ground truth labeled data.
We present a practical Robust, and Communication-efficient Semi-supervised FL (RC-SSFL) system design.
arXiv Detail & Related papers (2020-12-08T14:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.