CAMAL: Optimizing LSM-trees via Active Learning
- URL: http://arxiv.org/abs/2409.15130v1
- Date: Mon, 23 Sep 2024 15:35:23 GMT
- Title: CAMAL: Optimizing LSM-trees via Active Learning
- Authors: Weiping Yu, Siqiang Luo, Zihao Yu, Gao Cong,
- Abstract summary: We use machine learning to optimize LSM-tree structure, aiming to reduce the cost of processing various read/write operations.
By integrating Camal into a full system RocksDB, the system performance improves by 28% on average and up to 8x compared to a state-of-the-art RocksDB design.
- Score: 21.859547644109085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We use machine learning to optimize LSM-tree structure, aiming to reduce the cost of processing various read/write operations. We introduce a new approach Camal, which boasts the following features: (1) ML-Aided: Camal is the first attempt to apply active learning to tune LSM-tree based key-value stores. The learning process is coupled with traditional cost models to improve the training process; (2) Decoupled Active Learning: backed by rigorous analysis, Camal adopts active learning paradigm based on a decoupled tuning of each parameter, which further accelerates the learning process; (3) Easy Extrapolation: Camal adopts an effective mechanism to incrementally update the model with the growth of the data size; (4) Dynamic Mode: Camal is able to tune LSM-tree online under dynamically changing workloads; (5) Significant System Improvement: By integrating Camal into a full system RocksDB, the system performance improves by 28% on average and up to 8x compared to a state-of-the-art RocksDB design.
Related papers
- An Interpretable Neural Control Network with Adaptable Online Learning for Sample Efficient Robot Locomotion Learning [7.6119527195998]
Sequential Motion Executor (SME) is a three-layer interpretable neural network.
Adaptable Gradient-weighting Online Learning (AGOL) algorithm prioritizes the update of the parameters with high relevance score.
SME-AGOL requires 40% fewer samples and receives 150% higher final reward/locomotion performance on a simulated hexapod robot.
arXiv Detail & Related papers (2025-01-18T08:37:33Z) - ConML: A Universal Meta-Learning Framework with Task-Level Contrastive Learning [49.447777286862994]
ConML is a universal meta-learning framework that can be applied to various meta-learning algorithms.
We demonstrate that ConML integrates seamlessly with optimization-based, metric-based, and amortization-based meta-learning algorithms.
arXiv Detail & Related papers (2024-10-08T12:22:10Z) - Class Incremental Learning with Pre-trained Vision-Language Models [59.15538370859431]
We propose an approach to exploiting pre-trained vision-language models (e.g. CLIP) that enables further adaptation.
Experiments on several conventional benchmarks consistently show a significant margin of improvement over the current state-of-the-art.
arXiv Detail & Related papers (2023-10-31T10:45:03Z) - BroadCAM: Outcome-agnostic Class Activation Mapping for Small-scale
Weakly Supervised Applications [69.22739434619531]
We propose an outcome-agnostic CAM approach, called BroadCAM, for small-scale weakly supervised applications.
By evaluating BroadCAM on VOC2012 and BCSS-WSSS for WSSS and OpenImages30k for WSOL, BroadCAM demonstrates superior performance.
arXiv Detail & Related papers (2023-09-07T06:45:43Z) - Learning to Optimize LSM-trees: Towards A Reinforcement Learning based
Key-Value Store for Dynamic Workloads [16.898360021759487]
We present RusKey, a key-value store with the following new features.
RusKey is a first attempt to orchestrate LSM-tree structures online.
New LSM-tree design, named FLSM-tree, for efficient transition between different compaction policies.
arXiv Detail & Related papers (2023-08-14T09:00:58Z) - MERMAIDE: Learning to Align Learners using Model-Based Meta-Learning [62.065503126104126]
We study how a principal can efficiently and effectively intervene on the rewards of a previously unseen learning agent in order to induce desirable outcomes.
This is relevant to many real-world settings like auctions or taxation, where the principal may not know the learning behavior nor the rewards of real people.
We introduce MERMAIDE, a model-based meta-learning framework to train a principal that can quickly adapt to out-of-distribution agents.
arXiv Detail & Related papers (2023-04-10T15:44:50Z) - Meta-Learning with Self-Improving Momentum Target [72.98879709228981]
We propose Self-improving Momentum Target (SiMT) to improve the performance of a meta-learner.
SiMT generates the target model by adapting from the temporal ensemble of the meta-learner.
We show that SiMT brings a significant performance gain when combined with a wide range of meta-learning methods.
arXiv Detail & Related papers (2022-10-11T06:45:15Z) - One to Many: Adaptive Instrument Segmentation via Meta Learning and
Dynamic Online Adaptation in Robotic Surgical Video [71.43912903508765]
MDAL is a dynamic online adaptive learning scheme for instrument segmentation in robot-assisted surgery.
It learns the general knowledge of instruments and the fast adaptation ability through the video-specific meta-learning paradigm.
It outperforms other state-of-the-art methods on two datasets.
arXiv Detail & Related papers (2021-03-24T05:02:18Z) - Interleaving Learning, with Application to Neural Architecture Search [12.317568257671427]
We propose a novel machine learning framework referred to as interleaving learning (IL)
In our framework, a set of models collaboratively learn a data encoder in an interleaving fashion.
We apply interleaving learning to search neural architectures for image classification on CIFAR-10, CIFAR-100, and ImageNet.
arXiv Detail & Related papers (2021-03-12T00:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.