MACeIP: A Multimodal Ambient Context-enriched Intelligence Platform in Smart Cities
- URL: http://arxiv.org/abs/2409.15243v1
- Date: Mon, 23 Sep 2024 17:39:53 GMT
- Title: MACeIP: A Multimodal Ambient Context-enriched Intelligence Platform in Smart Cities
- Authors: Truong Thanh Hung Nguyen, Phuc Truong Loc Nguyen, Monica Wachowicz, Hung Cao,
- Abstract summary: This paper presents a Multimodal Ambient Context-enriched Intelligence Platform (MACeIP) for Smart Cities.
Our platform integrates advanced technologies, including Internet of Things (IoT) sensors, edge and cloud computing, and Multimodal AI, to create a responsive and intelligent urban ecosystem.
Key components include Interactive Hubs for citizen interaction, an extensive IoT sensor network, intelligent public asset management, a pedestrian monitoring system, a City Planning Portal, and a Cloud Computing System.
- Score: 1.8499314936771563
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a Multimodal Ambient Context-enriched Intelligence Platform (MACeIP) for Smart Cities, a comprehensive system designed to enhance urban management and citizen engagement. Our platform integrates advanced technologies, including Internet of Things (IoT) sensors, edge and cloud computing, and Multimodal AI, to create a responsive and intelligent urban ecosystem. Key components include Interactive Hubs for citizen interaction, an extensive IoT sensor network, intelligent public asset management, a pedestrian monitoring system, a City Planning Portal, and a Cloud Computing System. We demonstrate the prototype of MACeIP in several cities, focusing on Fredericton, New Brunswick. This work contributes to innovative city development by offering a scalable, efficient, and user-centric approach to urban intelligence and management.
Related papers
- MetaUrban: An Embodied AI Simulation Platform for Urban Micromobility [52.0930915607703]
Recent advances in Robotics and Embodied AI make public urban spaces no longer exclusive to humans.
Micromobility enabled by AI for short-distance travel in public urban spaces plays a crucial component in the future transportation system.
We present MetaUrban, a compositional simulation platform for the AI-driven urban micromobility research.
arXiv Detail & Related papers (2024-07-11T17:56:49Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.
In this article, we delineate the foundational assumptions, learning frameworks, and applicable scenarios of various deep learning-driven VAD routes.
We showcase our latest NSVAD research in industrial IoT and smart cities, along with an end-cloud collaborative architecture for deployable NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - Urban Generative Intelligence (UGI): A Foundational Platform for Agents
in Embodied City Environment [32.53845672285722]
Urban environments, characterized by their complex, multi-layered networks, face significant challenges in the face of rapid urbanization.
Recent developments in big data, artificial intelligence, urban computing, and digital twins have laid the groundwork for sophisticated city modeling and simulation.
This paper proposes Urban Generative Intelligence (UGI), a novel foundational platform integrating Large Language Models (LLMs) into urban systems.
arXiv Detail & Related papers (2023-12-19T03:12:13Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence.
This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements.
arXiv Detail & Related papers (2023-07-06T05:16:55Z) - Smart City Intersections: Intelligence Nodes for Future Metropolises [8.690266225071772]
Traffic intersections are the most suitable locations for the deployment of computing, communications, and intelligence services for smart cities of the future.
This paper focuses on high-bandwidth, low-latency applications, and in that context it describes: (i) system design considerations for smart city intersection intelligence nodes; (ii) key technological components including sensors, networking, edge computing, low latency design, and AI-based intelligence; and (iii) applications such as privacy preservation, cloud-connected vehicles, a real-time "radar-screen", traffic management, and monitoring of pedestrian behavior during pandemics.
arXiv Detail & Related papers (2022-05-03T17:22:57Z) - Data Analytics for Smart cities: Challenges and Promises [3.1498833540989413]
The goal of this study is to provide a comprehensive survey of data analytics in smart cities.
In this paper, we aim to focus on one of the smart cities important branches, namely Smart Mobility.
Intelligent decision-making systems in smart mobility offer many advantages such as saving energy, relaying city traffic, and more importantly, reducing air pollution by offering real-time useful information and imperative knowledge.
arXiv Detail & Related papers (2021-09-12T18:33:24Z) - Multi-Layered Diagnostics for Smart Cities [1.0828616610785522]
Smart cities use technology to improve traffic patterns, energy distribution, air quality and more.
The elements of a smart city can increase the convenience for its citizens, by integrating IT technology into many aspects of citizen interaction.
Actual deployment cases exist in U.S., Europe, Singapore, and South Korea.
arXiv Detail & Related papers (2021-07-20T06:58:11Z) - Toward Trustworthy Urban IT Systems: The Bright and Dark Sides of Smart
City Development [0.0]
Cloud computing and Internet-of-Things technologies are making modern cities smarter.
This paper looks at both the bright and dark sides of smart cities.
It provides a foundation for supporting work-related tasks of IT professionals as well as non-IT experts involved in urban design and development.
arXiv Detail & Related papers (2021-07-20T06:54:08Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities.
This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control.
arXiv Detail & Related papers (2021-04-07T14:31:08Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Smart Urban Mobility: When Mobility Systems Meet Smart Data [55.456196356335745]
Cities around the world are expanding dramatically, with urban population growth reaching nearly 2.5 billion people in urban areas and road traffic growth exceeding 1.2 billion cars by 2050.
The economic contribution of the transport sector represents 5% of the GDP in Europe and costs an average of US $482.05 billion in the U.S.
arXiv Detail & Related papers (2020-05-09T13:53:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.