論文の概要: StarVid: Enhancing Semantic Alignment in Video Diffusion Models via Spatial and SynTactic Guided Attention Refocusing
- arxiv url: http://arxiv.org/abs/2409.15259v2
- Date: Mon, 03 Mar 2025 15:01:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 15:10:40.083158
- Title: StarVid: Enhancing Semantic Alignment in Video Diffusion Models via Spatial and SynTactic Guided Attention Refocusing
- Title(参考訳): StarVid:空間的・統語的注意再焦点によるビデオ拡散モデルにおける意味的アライメントの強化
- Authors: Yuanhang Li, Qi Mao, Lan Chen, Zhen Fang, Lei Tian, Xinyan Xiao, Libiao Jin, Hua Wu,
- Abstract要約: 我々は,T2Vモデルにおける複数の被験者間のセマンティックアライメント,動作,テキストプロンプトを改善するための,プラグイン・アンド・プレイ方式であるtextbfStarVidを提案する。
StarVidはまず、テキストプロンプトに基づく2段階の運動軌跡計画に大規模言語モデル(LLM)の空間的推論機能を利用する。
- 参考スコア(独自算出の注目度): 40.50917266880829
- License:
- Abstract: Recent advances in text-to-video (T2V) generation with diffusion models have garnered significant attention. However, they typically perform well in scenes with a single object and motion, struggling in compositional scenarios with multiple objects and distinct motions to accurately reflect the semantic content of text prompts. To address these challenges, we propose \textbf{StarVid}, a plug-and-play, training-free method that improves semantic alignment between multiple subjects, their motions, and text prompts in T2V models. StarVid first leverages the spatial reasoning capabilities of large language models (LLMs) for two-stage motion trajectory planning based on text prompts. Such trajectories serve as spatial priors, guiding a spatial-aware loss to refocus cross-attention (CA) maps into distinctive regions. Furthermore, we propose a syntax-guided contrastive constraint to strengthen the correlation between the CA maps of verbs and their corresponding nouns, enhancing motion-subject binding. Both qualitative and quantitative evaluations demonstrate that the proposed framework significantly outperforms baseline methods, delivering videos of higher quality with improved semantic consistency.
- Abstract(参考訳): 近年,拡散モデルによるテキスト・ツー・ビデオ(T2V)生成が注目されている。
しかし、通常、単一のオブジェクトとモーションを持つシーンでよく機能し、複数のオブジェクトと異なる動作を持つ構成シナリオで苦労して、テキストプロンプトのセマンティックな内容を正確に反映する。
これらの課題に対処するために,T2Vモデルにおける複数の主題間のセマンティックアライメント,動作,テキストプロンプトを改善する,プラグアンドプレイの訓練不要な方法である \textbf{StarVid} を提案する。
StarVidはまず、テキストプロンプトに基づく2段階の運動軌跡計画に大規模言語モデル(LLM)の空間的推論機能を利用する。
このような軌道は、空間的先行として機能し、空間的認識喪失を導いて、相互注意(CA)マップを固有の領域に再焦点する。
さらに,動詞のCAマップと対応する名詞との相関性を高めるために,構文誘導型コントラスト制約を提案する。
質的および定量的評価は,提案フレームワークがベースライン法を著しく上回り,セマンティック一貫性を改善した高品質のビデオを提供することを示す。
関連論文リスト
- VideoLights: Feature Refinement and Cross-Task Alignment Transformer for Joint Video Highlight Detection and Moment Retrieval [8.908777234657046]
大規模言語モデルと視覚言語モデル(LLM/LVLM)は、様々な領域で広く普及している。
ここでは、(i)Convolutional ProjectionとFeature Refinementモジュールを通してこれらの制限に対処する新しいHD/MRフレームワークであるVideoLightsを提案する。
QVHighlights、TVSum、Charades-STAベンチマークに関する総合的な実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-12-02T14:45:53Z) - Unlocking the Potential of Text-to-Image Diffusion with PAC-Bayesian Theory [33.78620829249978]
テキスト・ツー・イメージ(T2I)拡散モデルは、高忠実で多彩で視覚的にリアルな画像を生成することによって、生成モデルに革命をもたらした。
最近の注目度に基づく手法は、オブジェクトの包摂性や言語的バインディングを改善してきたが、それでも属性のミスバインディングのような課題に直面している。
そこで,ベイズ的手法を用いて,所望のプロパティを強制するために,注意分布を優先したカスタムプライドを設計する手法を提案する。
本手法では,アテンション機構を解釈可能なコンポーネントとして扱い,微粒化制御と属性オブジェクトアライメントの改善を実現している。
論文 参考訳(メタデータ) (2024-11-25T10:57:48Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
本稿では,マルチモーダル入力を管理する新しい手法であるScene and Motion Conditional Diffusion (SMCD)を紹介する。
SMCDは、認識されたモーションコンディショニングモジュールを組み込み、シーン条件を統合するための様々なアプローチを調査する。
我々のデザインは映像の品質、動きの精度、セマンティック・コヒーレンスを大幅に向上させる。
論文 参考訳(メタデータ) (2024-03-15T10:36:24Z) - Generative Video Diffusion for Unseen Cross-Domain Video Moment
Retrieval [58.17315970207874]
ビデオモーメント検索(VMR)では、複雑な視覚言語関係を捉えるために、微細なモーメントテキスト関連を正確にモデル化する必要がある。
既存の手法は、クロスドメインアプリケーションのためのソースとターゲットのドメインビデオの両方のジョイントトレーニングを利用する。
対象の文によって制御されるソースビデオのきめ細かい編集のための生成的ビデオ拡散について検討する。
論文 参考訳(メタデータ) (2024-01-24T09:45:40Z) - DiverseMotion: Towards Diverse Human Motion Generation via Discrete
Diffusion [70.33381660741861]
テキスト記述に基づく高品質な人間の動作を合成するための新しいアプローチであるDiverseMotionを提案する。
我々のDiverseMotionは、最先端のモーション品質と競争力の多様性を達成できることを示す。
論文 参考訳(メタデータ) (2023-09-04T05:43:48Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Videoは制御可能なT2V拡散モデルであり、テキストプロンプトやエッジや奥行きマップのような参照制御マップに条件付のビデオを生成することができる。
本稿では,拡散に基づく生成プロセスに,コンテンツの事前と動作を組み込む新しい手法を提案する。
我々のフレームワークは、制御可能なテキスト・ツー・ビデオ生成における既存の最先端手法と比較して、高品質で一貫性のあるビデオを生成する。
論文 参考訳(メタデータ) (2023-05-23T09:03:19Z) - Coarse-to-Fine Video Denoising with Dual-Stage Spatial-Channel
Transformer [29.03463312813923]
Video Denoisingは、ノイズの多いビデオから高品質なフレームを復元することを目的としている。
既存のほとんどのアプローチでは、畳み込みニューラルネットワーク(CNN)を使用して、ノイズを元の視覚コンテンツから分離する。
粗大な映像をデノナイズするためのDual-stage Spatial-Channel Transformer (DSCT)を提案する。
論文 参考訳(メタデータ) (2022-04-30T09:01:21Z) - Fine-grained Temporal Contrastive Learning for Weakly-supervised
Temporal Action Localization [87.47977407022492]
本稿では,シーケンス・ツー・シーケンスの区別を文脈的に比較することで学習が,弱い教師付き行動の局所化に不可欠な帰納的バイアスをもたらすことを論じる。
微分可能な動的プログラミングの定式化の下では、FSD(Fen-fine Sequence Distance)とLCS(Longest Common Subsequence)の2つの相補的コントラストが設計されている。
提案手法は,2つのベンチマークにおいて最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-03-31T05:13:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。