論文の概要: An Efficient Recommendation Model Based on Knowledge Graph Attention-Assisted Network (KGATAX)
- arxiv url: http://arxiv.org/abs/2409.15315v1
- Date: Thu, 5 Sep 2024 16:42:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 20:05:48.753370
- Title: An Efficient Recommendation Model Based on Knowledge Graph Attention-Assisted Network (KGATAX)
- Title(参考訳): 知識グラフ注意支援ネットワーク(KGATAX)に基づく効率的な推薦モデル
- Authors: Zhizhong Wu,
- Abstract要約: 本研究では,新しい推薦モデルである知識グラフ注意支援ネットワーク(KGAT-AX)を提案する。
まず、知識グラフをレコメンデーションモデルに組み込み、高次接続性を探るための注意機構を導入する。
我々は、ホログラム埋め込みを通じてエンティティに補助情報を統合し、各エンティティの隣り合うエンティティの情報を、それらの推論関係を学習することによって集約する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommendation systems play a crucial role in helping users filter through vast amounts of information. However, traditional recommendation algorithms often overlook the integration and utilization of multi-source information, limiting system performance. Therefore, this study proposes a novel recommendation model, Knowledge Graph Attention-assisted Network (KGAT-AX). We first incorporate the knowledge graph into the recommendation model, introducing an attention mechanism to explore higher order connectivity more explicitly. By using multilayer interactive information propagation, the model aggregates information to enhance its generalization ability. Furthermore, we integrate auxiliary information into entities through holographic embeddings, aggregating the information of adjacent entities for each entity by learning their inferential relationships. This allows for better utilization of auxiliary information associated with entities. We conducted experiments on real datasets to demonstrate the rationality and effectiveness of the KGAT-AX model. Through experimental analysis, we observed the effectiveness and potential of KGAT-AX compared to other baseline models on public datasets. KGAT-AX demonstrates better knowledge information capture and relationship learning capabilities.
- Abstract(参考訳): 推薦システムは、ユーザが大量の情報をフィルタリングするのを助ける重要な役割を担っている。
しかし、従来のレコメンデーションアルゴリズムは、しばしばマルチソース情報の統合と利用を見逃し、システム性能を制限している。
そこで本研究では,新たなリコメンデーションモデルであるKGAT-AXを提案する。
まず、リコメンデーションモデルに知識グラフを組み込み、高次接続性をより明確に探求するための注意機構を導入する。
多層対話型情報伝搬を用いて、その一般化能力を高めるために情報を集約する。
さらに、ホログラフィー埋め込みを通じてエンティティに補助情報を統合し、各エンティティの隣り合うエンティティの情報を、それらの推論関係を学習して集約する。
これにより、エンティティに関連する補助情報のより良い利用が可能になる。
KGAT-AXモデルの合理性と有効性を示すために,実データを用いた実験を行った。
実験により,KGAT-AXの有効性と可能性について,公開データセット上の他のベースラインモデルと比較した。
KGAT-AXは、より良い知識情報取得と関係学習能力を示す。
関連論文リスト
- Hyper-Relational Knowledge Graph Neural Network for Next POI [10.855112358613843]
位置情報ベースのソーシャルネットワーク(LBSN)におけるPOIレコメンデーションシステムは,ユーザや企業に対して多くのメリットをもたらしている。
既存の多くの研究では、LBSNにおけるデータ空間の問題を軽減するためにKG(Knowledge Graph)を使用している。
本稿では,ハイパーリレーショナルな知識グラフニューラルネットワーク(HKGNN)モデルを提案する。
論文 参考訳(メタデータ) (2023-11-28T10:55:00Z) - A Personalized Recommender System Based-on Knowledge Graph Embeddings [0.0]
近年、知識グラフを情報モデリングの形式として利用することへの関心が高まっており、リコメンダシステムへの採用が増加している。
関連するユーザと関連するアイテムを知識グラフに組み込むことで、これらのシステムはそれらの間の暗黙のつながりをよりよく捉え、より正確なレコメンデーションを提供することができる。
論文 参考訳(メタデータ) (2023-07-20T08:14:06Z) - DEKGCI: A double-sided recommendation model for integrating knowledge
graph and user-item interaction graph [0.0]
本稿では,新しい両面推薦モデルであるDECGCIを提案する。
ユーザ側でのユーザ表現を豊かにするために,ユーザ-イテム相互作用グラフからの高次協調信号を使用する。
論文 参考訳(メタデータ) (2023-06-24T01:54:49Z) - Semantic Enhanced Knowledge Graph for Large-Scale Zero-Shot Learning [74.6485604326913]
我々は、専門知識とカテゴリ意味相関の両方を含む新しい意味強化知識グラフを提供する。
知識グラフの情報伝達のために,Residual Graph Convolutional Network (ResGCN)を提案する。
大規模画像Net-21KデータセットとAWA2データセットを用いた実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-12-26T13:18:36Z) - Conditional Attention Networks for Distilling Knowledge Graphs in
Recommendation [74.14009444678031]
本稿では,知識グラフをレコメンデーションシステムに組み込むために,知識対応コンディショナルアテンションネットワーク(KCAN)を提案する。
本研究では,まず,ユーザ・イテムネットワークとナレッジグラフのグローバルな意味的類似性を捉えるノード表現を得る。
そして,そのサブグラフに条件付きアテンションアグリゲーションを適用することで,その知識グラフを改良し,目標固有ノード表現を得る。
論文 参考訳(メタデータ) (2021-11-03T09:40:43Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
バッグレベルの関係抽出(RE)における注意と知識グラフの効果を定量的に評価する。
その結果,(1)注目精度の向上は,エンティティ参照特徴を抽出するモデルの性能を損なう可能性があること,(2)注目性能は様々なノイズ分布パターンの影響が大きいこと,(3)KG強化された注目はRE性能を向上するが,その効果は注目度を向上させるだけでなく,先行するエンティティを組み込むことによっても改善することがわかった。
論文 参考訳(メタデータ) (2021-07-26T09:38:28Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
知識グラフ(KG)は、推薦システムにおいてますます重要な役割を果たす。
既存のGNNベースのモデルは、きめ細かいインテントレベルでのユーザ項目関係の特定に失敗します。
本稿では,新しいモデルである知識グラフベースインテントネットワーク(kgin)を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:21:36Z) - Knowledge-Enhanced Top-K Recommendation in Poincar\'e Ball [33.90069123451581]
本稿では,知識グラフの階層構造を学習しやすくする,双曲空間における推薦モデルを提案する。
双曲的注意ネットワークを用いて、あるアイテムの隣接エンティティの相対的重要性を決定する。
提案モデルでは,Top-Kレコメンデーションにおいて,NDCG@Kの2~16%,既存モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-01-13T03:16:50Z) - Type-augmented Relation Prediction in Knowledge Graphs [65.88395564516115]
本稿では,タイプ情報とインスタンスレベルの情報の両方を関係予測に適用するタイプ拡張関係予測(TaRP)手法を提案する。
提案手法は,4つのベンチマークデータセット上での最先端手法よりも高い性能を実現する。
論文 参考訳(メタデータ) (2020-09-16T21:14:18Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z) - Deep Learning on Knowledge Graph for Recommender System: A Survey [36.41255991011155]
知識グラフは、2つのオブジェクトと1つまたは複数の関連属性を接続する高次関係を符号化することができる。
新たなグラフニューラルネットワーク(GNN)の助けを借りて,対象特性と関係性の両方をKGから抽出することができる。
論文 参考訳(メタデータ) (2020-03-25T22:53:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。