論文の概要: A Lightweight GAN-Based Image Fusion Algorithm for Visible and Infrared Images
- arxiv url: http://arxiv.org/abs/2409.15332v1
- Date: Sat, 7 Sep 2024 18:04:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 19:54:40.810199
- Title: A Lightweight GAN-Based Image Fusion Algorithm for Visible and Infrared Images
- Title(参考訳): 可視・赤外画像のための軽量GAN画像融合アルゴリズム
- Authors: Zhizhong Wu, Hao Gong, Jiajing Chen, Zhou Yuru, LiangHao Tan, Ge Shi,
- Abstract要約: 本稿では、可視光と赤外画像の融合に特化して設計された軽量画像融合アルゴリズムを提案する。
提案手法は,GAN (Generative Adversarial Network) において, Convolutional Block Attention Module を統合することでジェネレータを増強する。
M3FDデータセットを用いた実験により、提案アルゴリズムは、融合品質の点で類似した画像融合法より優れていることを示した。
- 参考スコア(独自算出の注目度): 4.473596922028091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a lightweight image fusion algorithm specifically designed for merging visible light and infrared images, with an emphasis on balancing performance and efficiency. The proposed method enhances the generator in a Generative Adversarial Network (GAN) by integrating the Convolutional Block Attention Module (CBAM) to improve feature focus and utilizing Depthwise Separable Convolution (DSConv) for more efficient computations. These innovations significantly reduce the model's computational cost, including the number of parameters and inference latency, while maintaining or even enhancing the quality of the fused images. Comparative experiments using the M3FD dataset demonstrate that the proposed algorithm not only outperforms similar image fusion methods in terms of fusion quality but also offers a more resource-efficient solution suitable for deployment on embedded devices. The effectiveness of the lightweight design is validated through extensive ablation studies, confirming its potential for real-time applications in complex environments.
- Abstract(参考訳): 本稿では,可視光と赤外画像の融合に特化して設計された軽量画像融合アルゴリズムを提案する。
提案手法は,GAN(Generative Adversarial Network)のジェネレータをCBAM(Convolutional Block Attention Module)と統合して機能フォーカスを改善し,より効率的な計算にDSConv(Depthwise Separable Convolution)を利用する。
これらの革新は、パラメータの数や推論遅延を含むモデルの計算コストを大幅に削減し、融合した画像の品質を維持または強化する。
M3FDデータセットを用いた比較実験により、提案アルゴリズムは、融合品質の観点から類似した画像融合法より優れているだけでなく、組み込みデバイスへの展開に適したリソース効率の高いソリューションを提供することを示した。
軽量設計の有効性は広範囲にわたるアブレーション研究を通じて検証され、複雑な環境におけるリアルタイムアプリケーションの可能性を確認する。
関連論文リスト
- Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
本稿では, Convolutional Transformer Layer (ConvFormer) を導入し, ConvFormer-based Super-Resolution Network (CFSR) を提案する。
CFSRは畳み込みベースのアプローチとトランスフォーマーベースのアプローチの両方の利点を継承する。
CFSRは計算コストと性能のバランスが最適であることを示す実験である。
論文 参考訳(メタデータ) (2024-01-11T03:08:00Z) - EPNet: An Efficient Pyramid Network for Enhanced Single-Image
Super-Resolution with Reduced Computational Requirements [12.439807086123983]
シングルイメージ超解像(SISR)は、ディープラーニングの統合によって大幅に進歩した。
本稿では,エッジ分割ピラミッドモジュール (ESPM) とパノラマ特徴抽出モジュール (PFEM) を調和して結合し,既存の手法の限界を克服する,EPNet (Efficient Pyramid Network) を提案する。
論文 参考訳(メタデータ) (2023-12-20T19:56:53Z) - Fusion of Infrared and Visible Images based on Spatial-Channel
Attentional Mechanism [3.388001684915793]
Infrared and visible image fusion (IVIF) の革新的アプローチであるAMFusionNetを提案する。
可視光源からのテクスチャ特徴と赤外線画像からの熱的詳細を同化することにより,包括的情報に富んだ画像を生成する。
提案手法は, 品質と量の観点から, 最先端のアルゴリズムより優れている。
論文 参考訳(メタデータ) (2023-08-25T21:05:11Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
2つの大きなスタブリングブロックは、画素の不一致や非効率な推論など、開発を妨げる。
本研究では,高機能なマルチ露光画像融合のための自己アライメントとディテールリプレクションモジュールを取り入れたアーキテクチャ検索に基づくパラダイムを提案する。
提案手法は様々な競争方式より優れており、一般的なシナリオではPSNRが3.19%向上し、不整合シナリオでは23.5%向上した。
論文 参考訳(メタデータ) (2023-05-20T17:01:52Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
本稿では,CDDFuse(Relationed-Driven Feature Decomposition Fusion)ネットワークを提案する。
近赤外可視画像融合や医用画像融合など,複数の融合タスクにおいてCDDFuseが有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-11-26T02:40:28Z) - Fast Multi-grid Methods for Minimizing Curvature Energy [6.882141405929301]
平均曲率とガウス曲率エネルギー関数を最小化するための高速マルチグリッドアルゴリズムを提案する。
我々の定式化では人工パラメータは導入されず、提案アルゴリズムの堅牢性を保証する。
画像のテクスチャを復元する能力を実証するために,画像復調とCT再構成の両問題に対して数値実験を行った。
論文 参考訳(メタデータ) (2022-04-17T04:34:38Z) - TGFuse: An Infrared and Visible Image Fusion Approach Based on
Transformer and Generative Adversarial Network [15.541268697843037]
本稿では,軽量トランスモジュールと対向学習に基づく赤外可視画像融合アルゴリズムを提案する。
大域的相互作用力にインスパイアされた我々は、トランスフォーマー技術を用いて、効果的な大域的核融合関係を学習する。
実験により提案したモジュールの有効性が実証された。
論文 参考訳(メタデータ) (2022-01-25T07:43:30Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - Efficient DWT-based fusion techniques using genetic algorithm for
optimal parameter estimation [0.0]
本研究は、離散ウェーブレット変換(DWT)とUDWTに基づく融合技術を用いている。
提案した融合モデルでは, DWT と UDWT の効率よく改良された GA を用いて最適パラメータ推定を行う。
その結果, DWT と UDWT を GA と融合させて最適パラメータ推定を行った結果, より融合した画像が得られた。
論文 参考訳(メタデータ) (2020-09-22T19:28:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。