A Lightweight GAN-Based Image Fusion Algorithm for Visible and Infrared Images
- URL: http://arxiv.org/abs/2409.15332v1
- Date: Sat, 7 Sep 2024 18:04:39 GMT
- Title: A Lightweight GAN-Based Image Fusion Algorithm for Visible and Infrared Images
- Authors: Zhizhong Wu, Hao Gong, Jiajing Chen, Zhou Yuru, LiangHao Tan, Ge Shi,
- Abstract summary: This paper presents a lightweight image fusion algorithm specifically designed for merging visible light and infrared images.
The proposed method enhances the generator in a Generative Adversarial Network (GAN) by integrating the Convolutional Block Attention Module.
Experiments using the M3FD dataset demonstrate that the proposed algorithm outperforms similar image fusion methods in terms of fusion quality.
- Score: 4.473596922028091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a lightweight image fusion algorithm specifically designed for merging visible light and infrared images, with an emphasis on balancing performance and efficiency. The proposed method enhances the generator in a Generative Adversarial Network (GAN) by integrating the Convolutional Block Attention Module (CBAM) to improve feature focus and utilizing Depthwise Separable Convolution (DSConv) for more efficient computations. These innovations significantly reduce the model's computational cost, including the number of parameters and inference latency, while maintaining or even enhancing the quality of the fused images. Comparative experiments using the M3FD dataset demonstrate that the proposed algorithm not only outperforms similar image fusion methods in terms of fusion quality but also offers a more resource-efficient solution suitable for deployment on embedded devices. The effectiveness of the lightweight design is validated through extensive ablation studies, confirming its potential for real-time applications in complex environments.
Related papers
- Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - EPNet: An Efficient Pyramid Network for Enhanced Single-Image
Super-Resolution with Reduced Computational Requirements [12.439807086123983]
Single-image super-resolution (SISR) has seen significant advancements through the integration of deep learning.
This paper introduces a new Efficient Pyramid Network (EPNet) that harmoniously merges an Edge Split Pyramid Module (ESPM) with a Panoramic Feature Extraction Module (PFEM) to overcome the limitations of existing methods.
arXiv Detail & Related papers (2023-12-20T19:56:53Z) - Fusion of Infrared and Visible Images based on Spatial-Channel
Attentional Mechanism [3.388001684915793]
We present AMFusionNet, an innovative approach to infrared and visible image fusion (IVIF)
By assimilating thermal details from infrared images with texture features from visible sources, our method produces images enriched with comprehensive information.
Our method outperforms state-of-the-art algorithms in terms of quality and quantity.
arXiv Detail & Related papers (2023-08-25T21:05:11Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
Two major stumbling blocks hinder the development, including pixel misalignment and inefficient inference.
This study introduces an architecture search-based paradigm incorporating self-alignment and detail repletion modules for robust multi-exposure image fusion.
The proposed method outperforms various competitive schemes, achieving a noteworthy 3.19% improvement in PSNR for general scenarios and an impressive 23.5% enhancement in misaligned scenarios.
arXiv Detail & Related papers (2023-05-20T17:01:52Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z) - Fast Multi-grid Methods for Minimizing Curvature Energy [6.882141405929301]
We propose fast multi-grid algorithms for minimizing mean curvature and Gaussian curvature energy functionals.
No artificial parameters are introduced in our formulation, which guarantees the robustness of the proposed algorithm.
Numerical experiments are presented on both image denoising and CT reconstruction problem to demonstrate the ability to recover image texture.
arXiv Detail & Related papers (2022-04-17T04:34:38Z) - TGFuse: An Infrared and Visible Image Fusion Approach Based on
Transformer and Generative Adversarial Network [15.541268697843037]
We propose an infrared and visible image fusion algorithm based on a lightweight transformer module and adversarial learning.
Inspired by the global interaction power, we use the transformer technique to learn the effective global fusion relations.
The experimental performance demonstrates the effectiveness of the proposed modules, with superior improvement against the state-of-the-art.
arXiv Detail & Related papers (2022-01-25T07:43:30Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
In this issue, we propose a novel image-specific convolutional modulation kernel (IKM)
We exploit the global contextual information of image or feature to generate an attention weight for adaptively modulating the convolutional kernels.
Experiments on single image super-resolution show that the proposed methods achieve superior performances over state-of-the-art methods.
arXiv Detail & Related papers (2021-11-16T11:05:10Z) - Efficient DWT-based fusion techniques using genetic algorithm for
optimal parameter estimation [0.0]
This research work uses discrete wavelet transform (DWT) and undecimated discrete wavelet transform (UDWT)-based fusion techniques.
The proposed fusion model uses an efficient, modified GA in DWT and UDWT for optimal parameter estimation.
It is observed from our experiments that fusion using DWT and UDWT techniques with GA for optimal parameter estimation resulted in a better fused image.
arXiv Detail & Related papers (2020-09-22T19:28:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.