Geometric Relational Embeddings
- URL: http://arxiv.org/abs/2409.15369v1
- Date: Wed, 18 Sep 2024 22:02:24 GMT
- Title: Geometric Relational Embeddings
- Authors: Bo Xiong,
- Abstract summary: We propose relational embeddings, a paradigm of embeddings that respect the underlying symbolic structures.
Results obtained from benchmark real-world datasets demonstrate the efficacy of geometric relational embeddings.
- Score: 19.383110247906256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relational representation learning transforms relational data into continuous and low-dimensional vector representations. However, vector-based representations fall short in capturing crucial properties of relational data that are complex and symbolic. We propose geometric relational embeddings, a paradigm of relational embeddings that respect the underlying symbolic structures. Specifically, this dissertation introduces various geometric relational embedding models capable of capturing: 1) complex structured patterns like hierarchies and cycles in networks and knowledge graphs; 2) logical structures in ontologies and logical constraints applicable for constraining machine learning model outputs; and 3) high-order structures between entities and relations. Our results obtained from benchmark and real-world datasets demonstrate the efficacy of geometric relational embeddings in adeptly capturing these discrete, symbolic, and structured properties inherent in relational data.
Related papers
- Geometry of the Space of Partitioned Networks: A Unified Theoretical and Computational Framework [3.69102525133732]
"Space of networks" has a complex structure that cannot be adequately described using conventional statistical tools.
We introduce a measure-theoretic formalism for modeling generalized network structures such as graphs, hypergraphs, or graphs whose nodes come with a partition into categorical classes.
We show that our metric is an Alexandrov space of non-negative curvature, and leverage this structure to define gradients for certain functionals commonly arising in geometric data analysis tasks.
arXiv Detail & Related papers (2024-09-10T07:58:37Z) - Compositional Structures in Neural Embedding and Interaction Decompositions [101.40245125955306]
We describe a basic correspondence between linear algebraic structures within vector embeddings in artificial neural networks.
We introduce a characterization of compositional structures in terms of "interaction decompositions"
We establish necessary and sufficient conditions for the presence of such structures within the representations of a model.
arXiv Detail & Related papers (2024-07-12T02:39:50Z) - Discovering Abstract Symbolic Relations by Learning Unitary Group Representations [7.303827428956944]
We investigate a principled approach for symbolic operation completion (SOC)
SOC poses a unique challenge in modeling abstract relationships between discrete symbols.
We demonstrate that SOC can be efficiently solved by a minimal model - a bilinear map - with a novel factorized architecture.
arXiv Detail & Related papers (2024-02-26T20:18:43Z) - Learning Hierarchical Relational Representations through Relational Convolutions [2.5322020135765464]
We introduce "relational convolutional networks", a neural architecture equipped with computational mechanisms that capture progressively more complex relational features.
A key component of this framework is a novel operation that captures relational patterns in groups of objects by convolving graphlet filters.
We present the motivation and details of the architecture, together with a set of experiments to demonstrate how relational convolutional networks can provide an effective framework for modeling relational tasks that have hierarchical structure.
arXiv Detail & Related papers (2023-10-05T01:22:50Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
We propose a structure-modeled textual encoding framework for inductive logical reasoning over KGs.
It encodes linearized query structures and entities using pre-trained language models to find answers.
We conduct experiments on two inductive logical reasoning datasets and three transductive datasets.
arXiv Detail & Related papers (2023-05-23T01:25:29Z) - Geometric Relational Embeddings: A Survey [39.57716353191535]
We survey methods that underly geometric relational embeddings and categorize them based on the embedding geometries that are used to represent the data.
We identify the desired properties (i.e., inductive biases) of each kind of embedding and discuss some potential future work.
arXiv Detail & Related papers (2023-04-24T09:33:30Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
We consider the problem of data classification where the training set consists of just a few data points.
We reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities.
arXiv Detail & Related papers (2022-11-07T14:52:58Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
We introduce a simple architecture based on similarity-distribution scores which we name Compositional Network generalization (CoRelNet)
We find that simple architectural choices can outperform existing models in out-of-distribution generalizations.
arXiv Detail & Related papers (2022-06-09T16:24:01Z) - Transformer-based Dual Relation Graph for Multi-label Image Recognition [56.12543717723385]
We propose a novel Transformer-based Dual Relation learning framework.
We explore two aspects of correlation, i.e., structural relation graph and semantic relation graph.
Our approach achieves new state-of-the-art on two popular multi-label recognition benchmarks.
arXiv Detail & Related papers (2021-10-10T07:14:52Z) - DensE: An Enhanced Non-commutative Representation for Knowledge Graph
Embedding with Adaptive Semantic Hierarchy [4.607120217372668]
We develop a novel knowledge graph embedding method, named DensE, to provide an improved modeling scheme for the complex composition patterns of relations.
Our method decomposes each relation into an SO(3) group-based rotation operator and a scaling operator in the three dimensional (3-D) Euclidean space.
Experimental results on multiple benchmark knowledge graphs show that DensE outperforms the current state-of-the-art models for missing link prediction.
arXiv Detail & Related papers (2020-08-11T06:45:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.