Towards a mathematical understanding of learning from few examples with
nonlinear feature maps
- URL: http://arxiv.org/abs/2211.03607v1
- Date: Mon, 7 Nov 2022 14:52:58 GMT
- Title: Towards a mathematical understanding of learning from few examples with
nonlinear feature maps
- Authors: Oliver J. Sutton, Alexander N. Gorban, Ivan Y. Tyukin
- Abstract summary: We consider the problem of data classification where the training set consists of just a few data points.
We reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of data classification where the training set
consists of just a few data points. We explore this phenomenon mathematically
and reveal key relationships between the geometry of an AI model's feature
space, the structure of the underlying data distributions, and the model's
generalisation capabilities. The main thrust of our analysis is to reveal the
influence on the model's generalisation capabilities of nonlinear feature
transformations mapping the original data into high, and possibly infinite,
dimensional spaces.
Related papers
- Dissecting embedding method: learning higher-order structures from data [0.0]
Geometric deep learning methods for data learning often include set of assumptions on the geometry of the feature space.
These assumptions together with data being discrete and finite can cause some generalisations, which are likely to create wrong interpretations of the data and models outputs.
arXiv Detail & Related papers (2024-10-14T08:19:39Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
We introduce a new tool, the interaction tensor, for empirically analyzing the interaction between data and model through features.
Based on these observations, we propose a conceptual framework for feature learning.
Under this framework, the expected accuracy for a single hypothesis and agreement for a pair of hypotheses can both be derived in closed-form.
arXiv Detail & Related papers (2023-06-07T21:35:26Z) - Study of Manifold Geometry using Multiscale Non-Negative Kernel Graphs [32.40622753355266]
We propose a framework to study the geometric structure of the data.
We make use of our recently introduced non-negative kernel (NNK) regression graphs to estimate the point density, intrinsic dimension, and the linearity of the data manifold (curvature)
arXiv Detail & Related papers (2022-10-31T17:01:17Z) - A geometric framework for outlier detection in high-dimensional data [0.0]
Outlier or anomaly detection is an important task in data analysis.
We provide a framework that exploits the metric structure of a data set.
We show that exploiting this structure significantly improves the detection of outlying observations in high-dimensional data.
arXiv Detail & Related papers (2022-07-01T12:07:51Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
We explore the phenomenon and reveal key relationships between dimensionality of AI model's feature space, non-degeneracy of data distributions, and the model's generalisation capabilities.
The main thrust of our present analysis is on the influence of nonlinear feature transformations mapping original data into higher- and possibly infinite-dimensional spaces on the resulting model's generalisation capabilities.
arXiv Detail & Related papers (2022-03-31T10:36:50Z) - Generalisation error in learning with random features and the hidden
manifold model [23.71637173968353]
We study generalised linear regression and classification for a synthetically generated dataset.
We consider the high-dimensional regime and using the replica method from statistical physics.
We show how to obtain the so-called double descent behaviour for logistic regression with a peak at the threshold.
We discuss the role played by correlations in the data generated by the hidden manifold model.
arXiv Detail & Related papers (2020-02-21T14:49:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.