論文の概要: Prompting Large Language Models for Supporting the Differential Diagnosis of Anemia
- arxiv url: http://arxiv.org/abs/2409.15377v1
- Date: Fri, 20 Sep 2024 06:47:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 13:20:55.024200
- Title: Prompting Large Language Models for Supporting the Differential Diagnosis of Anemia
- Title(参考訳): 貧血の鑑別診断支援のための大規模言語モデルの提案
- Authors: Elisa Castagnari, Lillian Muyama, Adrien Coulet,
- Abstract要約: 実際には、臨床医は、検査、観察、イメージングなどの一連の手順に従って診断を行う。
診断決定に到達するための経路は、専門家組織が作成したガイドラインによって文書化され、これらの手順を通じて臨床医が正しい診断に到達するよう指導する。
本研究の目的は,臨床ガイドラインで得られるものと同様の経路を発達させることであった。
我々は3つのLarge Language Model (LLMs) -Generative Pretrained Transformer 4 (GPT-4)、Large Language Model Meta AI (LLaMA)、Mistral - を、貧血とそのサブタイプを識別するための合成的で現実的なデータセットでテストした。
- 参考スコア(独自算出の注目度): 0.8602553195689511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practice, clinicians achieve a diagnosis by following a sequence of steps, such as laboratory exams, observations, or imaging. The pathways to reach diagnosis decisions are documented by guidelines authored by expert organizations, which guide clinicians to reach a correct diagnosis through these sequences of steps. While these guidelines are beneficial for following medical reasoning and consolidating medical knowledge, they have some drawbacks. They often fail to address patients with uncommon conditions due to their focus on the majority population, and are slow and costly to update, making them unsuitable for rapidly emerging diseases or new practices. Inspired by clinical guidelines, our study aimed to develop pathways similar to those that can be obtained in clinical guidelines. We tested three Large Language Models (LLMs) -Generative Pretrained Transformer 4 (GPT-4), Large Language Model Meta AI (LLaMA), and Mistral -on a synthetic yet realistic dataset to differentially diagnose anemia and its subtypes. By using advanced prompting techniques to enhance the decision-making process, we generated diagnostic pathways using these models. Experimental results indicate that LLMs hold huge potential in clinical pathway discovery from patient data, with GPT-4 exhibiting the best performance in all conducted experiments.
- Abstract(参考訳): 実際には、臨床医は、検査、観察、イメージングなどの一連の手順に従って診断を行う。
診断決定に到達するための経路は、専門家組織が作成したガイドラインによって文書化され、これらの手順を通じて臨床医が正しい診断に到達するよう指導する。
これらのガイドラインは医学的推論や医学的知識の統合に有用であるが、欠点もある。
多くの場合、大多数の人口に焦点が当てられているため、異常な状態の患者に対処することができず、更新には遅くて費用がかかるため、急激な新興疾患や新しい習慣には適さない。
臨床ガイドラインに触発された本研究は,臨床ガイドラインで得られるものと同様の経路を開拓することを目的とした。
我々は3つのLarge Language Model (LLMs) -Generative Pretrained Transformer 4 (GPT-4)、Large Language Model Meta AI (LLaMA)、Mistral - を、貧血とそのサブタイプを識別するための合成的で現実的なデータセットでテストした。
意思決定プロセスを改善するために高度なプロンプト技術を用いることで,これらのモデルを用いて診断経路を生成する。
実験結果から,LPMは患者データから臨床経路の発見において大きな可能性を秘めており,GPT-4はすべての実験で最高の成績を示した。
関連論文リスト
- MAGDA: Multi-agent guideline-driven diagnostic assistance [43.15066219293877]
救急部門、地方病院、または未開発地域の診療所では、臨床医は訓練された放射線技師による高速な画像分析を欠いていることが多い。
本研究では,ゼロショットガイドライン駆動意思決定支援のための新しいアプローチを提案する。
我々は、患者診断に到達するために協調する、対照的な視覚言語モデルで強化された複数のLLMエージェントのシステムをモデル化する。
論文 参考訳(メタデータ) (2024-09-10T09:10:30Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
本稿では,大規模言語モデルと特定の診断規則との整合性を考慮したルールアラインフレームワークを提案する。
患者と医師間の規則に基づくコミュニケーションを含む医療対話データセットを開発した。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-22T17:44:40Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
MedS-Benchは大規模言語モデル(LLM)の性能を臨床的に評価するためのベンチマークである。
MedS-Benchは、臨床報告の要約、治療勧告、診断、名前付きエンティティ認識、医療概念説明を含む、11のハイレベルな臨床タスクにまたがる。
MedS-Insは58の医療指向言語コーパスで構成され、112のタスクで1350万のサンプルを収集している。
論文 参考訳(メタデータ) (2024-08-22T17:01:34Z) - Digital Diagnostics: The Potential Of Large Language Models In Recognizing Symptoms Of Common Illnesses [0.2995925627097048]
本研究は,患者症状を解釈し,一般的な疾患に適合する診断を判定することにより,各モデルの診断能力を評価する。
GPT-4は、医療データに基づくトレーニングの深部および完全な履歴から高い診断精度を示す。
Geminiは、病気のトリアージにおいて重要なツールとして高い精度で実行し、信頼性のあるモデルになる可能性を示している。
論文 参考訳(メタデータ) (2024-05-09T15:12:24Z) - Deep Reinforcement Learning for Personalized Diagnostic Decision Pathways Using Electronic Health Records: A Comparative Study on Anemia and Systemic Lupus Erythematosus [1.7965876401882177]
我々は、診断のタスクをシーケンシャルな意思決定問題として定式化する。
本研究では,Deep Reinforcement Learning (DRL)アルゴリズムを用いて,行動の最適なシーケンスを学習する。
貧血と全身性エリテマトーデスの2症例を経験したので報告する。
論文 参考訳(メタデータ) (2024-04-09T00:07:16Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
本研究は,医師のエミュレートによる計画能力の向上を目的としたLCMに基づく診断システムを提案する。
実際の患者電子カルテデータを利用して,仮想患者と医師とのシミュレーション対話を構築した。
論文 参考訳(メタデータ) (2024-04-04T06:16:35Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Beyond Direct Diagnosis: LLM-based Multi-Specialist Agent Consultation
for Automatic Diagnosis [30.943705201552643]
本研究では,潜在的な疾患に対するエージェントの確率分布を適応的に融合させることにより,現実世界の診断過程をモデル化する枠組みを提案する。
提案手法では,パラメータ更新とトレーニング時間を大幅に短縮し,効率と実用性を向上する。
論文 参考訳(メタデータ) (2024-01-29T12:25:30Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。