Generalized conformal quantum mechanics as an ideal observer in two-dimensional gravity
- URL: http://arxiv.org/abs/2409.15415v1
- Date: Mon, 23 Sep 2024 18:00:01 GMT
- Title: Generalized conformal quantum mechanics as an ideal observer in two-dimensional gravity
- Authors: Archi Banerjee, Tanay Kibe, MartÃn Molina, Ayan Mukhopadhyay,
- Abstract summary: We obtain an action for a generalized conformal mechanics (GCM) coupled to Jackiw-Teitelboim (JT) gravity from a double scaling limit of the motion of a charged massive particle.
We construct the semi-classical Hilbert space of the full theory by explicitly solving the general time-dependent normalizable solutions of the Schr"odinger equation for GCM.
Since the full theory of the GCM coupled to JT gravity is amenable to quantization, it can lead to a solvable model for a detector coupled to quantum gravity.
- Score: 2.380388040384068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We obtain an action for a generalized conformal mechanics (GCM) coupled to Jackiw-Teitelboim (JT) gravity from a double scaling limit of the motion of a charged massive particle in the near-horizon geometry of a near-extremal spherical black hole. When JT gravity is treated in the classical approximation, the backreaction of the particle's wavefunction on the time-reparametrization mode (and therefore the bulk metric) vanishes while the conformal symmetry in GCM is reparametrized in a state-dependent way. We also construct the semi-classical Hilbert space of the full theory by explicitly solving the general time-dependent normalizable solutions of the Schr\"{o}dinger equation for GCM, and show that the time-reparametrization mode can be inferred from the measurement of suitable observables. Since the full theory of the GCM coupled to JT gravity is amenable to quantization, it can lead to a solvable model for a detector coupled to quantum gravity.
Related papers
- Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - A path integral formula of quantum gravity emergent from entangled local structures [0.0]
We show that a theory of emergent gravity arises, and that this can be recast according to the Ashtekar's formulation of general relativity.
As a consequence of the quantization procedure, the Hamiltonian is recovered to be non-Hermitian, and can be related to the complex action formalism.
arXiv Detail & Related papers (2023-04-21T10:23:35Z) - Beyond semiclassical time: dynamics in quantum cosmology [0.0]
We review two approaches to the definition of the Hilbert space and evolution in mechanical theories with local time-reparametrization invariance.
We discuss in which sense both approaches exhibit an inner product that is gauge-fixed via an operator version of the usual Faddeev-Popov procedure.
We note that a conditional probability interpretation of the physical states is possible, so that both formalisms are examples of quantum mechanics with a relational dynamics.
arXiv Detail & Related papers (2023-02-15T19:00:09Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Geometric post-Newtonian description of spin-half particles in curved
spacetime [0.0]
Einstein Equivalence Principle (EEP) requires all matter components to universally couple to gravity via a single common geometry.
I study the geometric theory of coupling a spin-1/2 particle to gravity in a twofold expansion scheme.
The formal expansion in powers of 1/c yields a systematic and complete generation of gravity corrections for quantum systems.
arXiv Detail & Related papers (2022-04-12T13:39:09Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Quantum gravitational decoherence from fluctuating minimal length and
deformation parameter at the Planck scale [0.0]
We introduce a decoherence process due to quantum gravity effects.
We find that the decoherence rate predicted by our model is extremal, being minimal in the deep quantum regime below the Planck scale and maximal in the mesoscopic regime beyond it.
arXiv Detail & Related papers (2020-11-02T19:01:16Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum black holes in bootstrapped Newtonian gravity [0.0]
We analyse the classical configurations of a bootstrapped Newtonian potential generated by homogeneous spherically symmetric sources in terms of a quantum coherent state.
We note that the classical relation between the ADM mass and the proper mass of the source naturally gives rise to a Generalised Uncertainty Principle for the size of the gravitational radius in the quantum theory.
Our findings could be useful for analysing the classicalization of gravity in the presence of matter and the avoidance of singularities in the gravitational collapse of compact sources.
arXiv Detail & Related papers (2020-02-01T14:36:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.