論文の概要: Enabling Efficient On-Device Fine-Tuning of LLMs Using Only Inference Engines
- arxiv url: http://arxiv.org/abs/2409.15520v2
- Date: Thu, 7 Nov 2024 01:52:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 19:50:01.748258
- Title: Enabling Efficient On-Device Fine-Tuning of LLMs Using Only Inference Engines
- Title(参考訳): 推論エンジンのみを用いたLCMの高効率オンデバイスファインチューニング
- Authors: Lei Gao, Amir Ziashahabi, Yue Niu, Salman Avestimehr, Murali Annavaram,
- Abstract要約: 大規模言語モデル(LLM)は現在、大規模なクラウドサーバ上で事前トレーニングされ、微調整されている。
次のフロンティアはLLMパーソナライズであり、ファンデーションモデルをユーザ/タスク固有のデータで微調整することができる。
リソース制約のあるエッジデバイスの微調整は、かなりのメモリと計算要求のために大きな課題となる。
- 参考スコア(独自算出の注目度): 17.539008562641303
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) are currently pre-trained and fine-tuned on large cloud servers. The next frontier is LLM personalization, where a foundation model can be fine-tuned with user/task-specific data. Given the sensitive nature of such private data, it is desirable to fine-tune these models on edge devices to improve user trust. However, fine-tuning on resource-constrained edge devices presents significant challenges due to substantial memory and computational demands, as well as limited infrastructure support. We observe that inference engines (e.g., ExecuTorch) can be repurposed for fine-tuning by leveraging zeroth-order (ZO) optimization, which uses multiple forward passes to approximate gradients. However, directly applying ZO methods on edge devices is impractical due to the high computational cost of multiple model perturbations required to achieve accuracy improvements. Based on these observations, we propose a memory- and computation-efficient LLM fine-tuning method for edge devices. Our approach has three key innovations: (1) We introduce a parallelized randomized gradient estimation (P-RGE) technique that achieves high parallel efficiency by leveraging outer-loop and inner-loop parallelization. This enables multiple function queries and forward passes to be executed in parallel, reducing training time. (2) We integrate P-RGE with parameter-efficient fine-tuning methods (e.g. LoRA) to further reduce computational and memory overhead. (3) We implement a P-RGE LoRA-FA module that fully supports fine-tuning with ExecuTorch. Our approach requires no modifications to ExecuTorch's runtime code, as it can be implemented with server-side code changes only. Experiments demonstrate that P-RGE achieves substantial runtime speedups and memory savings while improving fine-tuning accuracy, paving the way for practical deployment of LLMs in real-time, on-device applications.
- Abstract(参考訳): 大規模言語モデル(LLM)は現在、大規模なクラウドサーバ上で事前トレーニングされ、微調整されている。
次のフロンティアはLLMパーソナライズであり、ファンデーションモデルをユーザ/タスク固有のデータで微調整することができる。
このようなプライベートデータの繊細な性質を考えると、これらのモデルをエッジデバイス上で微調整し、ユーザの信頼を高めることが望ましい。
しかし、リソース制約のあるエッジデバイスを微調整すると、メモリと計算の要求が大きくなり、インフラのサポートが制限されるため、大きな課題が生じる。
近似勾配に多重フォワードパスを用いるゼロ階数最適化(ZO)を利用して、推論エンジン(例えばExecuTorch)を微調整に再利用できることを観察する。
しかし、エッジデバイスに直接ZO法を適用することは、精度の向上に必要な複数のモデル摂動の計算コストが高いため、現実的ではない。
これらの観測に基づいて,エッジデバイスのためのメモリ効率と計算効率のよいLCM微調整法を提案する。
1)外ループと内ループの並列化を利用して高い並列効率を実現する並列化ランダム化勾配推定(P-RGE)技術を導入する。
これにより、複数の関数クエリとフォワードパスの並列実行が可能になり、トレーニング時間が短縮される。
2)P-RGEをパラメータ効率のよい微調整法(例えばLoRA)と統合し,計算とメモリのオーバーヘッドをさらに軽減する。
(3) ExecuTorchによる微調整を完全にサポートするP-RGE LoRA-FAモジュールを実装した。
私たちのアプローチではExecuTorchのランタイムコードの変更は必要ありません。
実験により、P-RGEは実行時の大幅なスピードアップとメモリ節約を実現し、微調整精度を改善し、リアルタイムのオンデバイスアプリケーションにLLMを実践的に展開する道を開いた。
関連論文リスト
- IterIS: Iterative Inference-Solving Alignment for LoRA Merging [14.263218227928729]
低ランク適応(LoRA)は、特定の下流タスクのために様々な領域にまたがる大きなモデルを微調整するために広く使われている。
LoRAマージは、データのプライバシを維持しながら複数のLoRAを統一アダプタに結合することで、効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-21T19:04:02Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - EDGE-LLM: Enabling Efficient Large Language Model Adaptation on Edge Devices via Layerwise Unified Compression and Adaptive Layer Tuning and Voting [12.006890185810322]
本稿では,エッジデバイス上での安価かつ効率的なLLM適応を実現するために,Edge-LLMと呼ばれる計算およびメモリ効率の高いLLMチューニングフレームワークを提案する。
具体的には,レイヤワイド統一圧縮(LUC)技術を用いて,レイヤワイドプルーニング空間と量子化ビット幅ポリシを生成して計算オーバーヘッドを削減する,(2)バックプロパゲーション深さを減らしてメモリオーバーヘッドを削減する適応層チューニングと投票方式,(3)LUCが導入した不規則な計算パターンと適応層チューニングを補完するハードウェアスケジューリング戦略,の3つのコアコンポーネントを特徴とする。
論文 参考訳(メタデータ) (2024-06-22T06:51:47Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections [35.133698935322634]
大規模言語モデル(LLM)は、最近、多くの言語処理タスクに対処するための強力なツールとして登場した。
勾配勾配勾配を用いた効率的なモデル収束に必要な重要な成分を同定し,特徴付ける。
この結果から, 微調整と事前学習の両方のための, 安価かつメモリ効率のよいアルゴリズムが得られた。
論文 参考訳(メタデータ) (2024-05-28T09:23:14Z) - HiRE: High Recall Approximate Top-$k$ Estimation for Efficient LLM
Inference [68.59839755875252]
HiREは2つの新しいコンポーネントから構成される: (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (ii) DA-TOP-$k$: 効率的なマルチデバイス近似トップ-k$演算子) (i) (i) (i) (i) (i) (i) (i) DA-TOP-$k$演算子) 。
我々は、10億のパラメータモデルにおいて、HiREがソフトマックスとフィードフォワード層の両方に適用され、ほぼ一致した事前学習と下流の精度を実現し、1台のTPUv5eデバイスで1.47Times$の推論遅延を高速化することを示した。
論文 参考訳(メタデータ) (2024-02-14T18:04:36Z) - Fine-Tuning Language Models with Just Forward Passes [92.04219196752007]
微調整言語モデル(LM)は、様々な下流タスクで成功したが、LMのサイズが大きくなるにつれて、バックプロパゲーションは大量のメモリを必要とする。
本稿では,メモリ効率の高いゼロソーダ(MeZO)を提案する。
論文 参考訳(メタデータ) (2023-05-27T02:28:10Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
分散を低減した行列生成のために, WTA-CRS と呼ばれる新しい非バイアス推定系を提案する。
我々の研究は、チューニング変換器の文脈において、提案した推定器が既存のものよりも低い分散を示すという理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-05-24T15:52:08Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。