論文の概要: MobiZO: Enabling Efficient LLM Fine-Tuning at the Edge via Inference Engines
- arxiv url: http://arxiv.org/abs/2409.15520v3
- Date: Sat, 20 Sep 2025 21:59:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 14:36:44.512068
- Title: MobiZO: Enabling Efficient LLM Fine-Tuning at the Edge via Inference Engines
- Title(参考訳): MobiZO:推論エンジンによるエッジでの効率的なLLMファインチューニングの実現
- Authors: Lei Gao, Amir Ziashahabi, Yue Niu, Salman Avestimehr, Murali Annavaram,
- Abstract要約: 本稿では,大規模言語モデル(LLM)のための資源効率の高い微調整フレームワークであるMobiZOを紹介する。
MobiZOは、微調整精度を向上しつつ、実行時の大幅な高速化とメモリ節約を実現する。
MobiZOは、微調整精度を向上しつつ、実行時の大幅なスピードアップとメモリ節約を実現している。
- 参考スコア(独自算出の注目度): 28.18421624702502
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) are currently pre-trained and fine-tuned on large cloud servers. The next frontier is LLM personalization, where a foundation model can be fine-tuned with user/task-specific data. Given the sensitive nature of such private data, it is desirable to fine-tune these models on edge devices to improve user trust. However, fine-tuning on resource-constrained edge devices presents significant challenges due to substantial memory and computational demands, as well as limited infrastructure support. We observe that inference engines (e.g., ExecuTorch) can be repurposed for fine-tuning by leveraging zeroth-order (ZO) optimization, which uses multiple forward passes to approximate gradients. While promising, direct application of ZO methods on edge devices is inefficient due to the high computational cost of multiple forward passes required for accurate gradient estimation, and their deployment has been largely unexplored in practice. We introduce MobiZO, a resource-efficient fine-tuning framework for LLMs specifically designed for edge devices. MobiZO combines three key innovations: (1) a parallelized randomized gradient estimator that employs both outer-loop and inner-loop parallelism to eliminate sequential forward passes, (2) a specialized Multi-Perturbed LoRA (MP-LoRA) module that enables efficient realization of both inner and outer loop parallelism, and (3) a seamless integration with ExecuTorch for on-device training, requiring no modifications to the runtime. Experiments demonstrate that MobiZO achieves substantial runtime speedups and memory savings while improving fine-tuning accuracy, paving the way for practical deployment of LLMs in real-time, on-device applications.
- Abstract(参考訳): 大規模言語モデル(LLM)は現在、大規模なクラウドサーバ上で事前トレーニングされ、微調整されている。
次のフロンティアはLLMパーソナライズであり、ファンデーションモデルをユーザ/タスク固有のデータで微調整することができる。
このようなプライベートデータの繊細な性質を考えると、これらのモデルをエッジデバイス上で微調整し、ユーザの信頼を高めることが望ましい。
しかし、リソース制約のあるエッジデバイスを微調整すると、メモリと計算の要求が大きくなり、インフラのサポートが制限されるため、大きな課題が生じる。
近似勾配に多重フォワードパスを用いるゼロ階数最適化(ZO)を利用して、推論エンジン(例えばExecuTorch)を微調整に再利用できることを観察する。
有望ではあるが、エッジデバイスへのZO法の直接適用は、正確な勾配推定に必要な複数前方パスの計算コストが高いため、非効率である。
我々は,エッジデバイス用に特別に設計されたLCMのための資源効率の高い微調整フレームワークMobiZOを紹介する。
MobiZOは,(1)外ループと内ループの両方の並列性を利用する並列化ランダム化勾配推定器,(2)内ループと外ループの並列性の両方を効率的に実現可能な特殊な多機能 LoRA (MP-LoRA) モジュール,(3)オンデバイストレーニングのためのExecuTorchとのシームレスな統合,という3つの重要なイノベーションを組み合わせる。
実験的には、MobiZOは実行時の大幅なスピードアップとメモリ節約を実現し、微調整の精度を改善し、リアルタイムのオンデバイスアプリケーションにLLMを実践的に展開する道を開いた。
関連論文リスト
- From LLMs to Edge: Parameter-Efficient Fine-Tuning on Edge Devices [3.4233698915405544]
本稿では,資源制約されたエッジ環境に通常デプロイされる畳み込みアーキテクチャのPEFT手法をベンチマークし,解析する。
評価されたPEFT法は, 深部分離可能な畳み込みアーキテクチャに適用した場合, メモリ効率が半減することがわかった。
論文 参考訳(メタデータ) (2025-07-31T13:23:21Z) - Gradient-based Fine-Tuning through Pre-trained Model Regularization [20.823624386591902]
重み行列の行や列を更新する効率的な勾配ベースおよび正規化微調整法(GRFT)を提案する。
GRFTは最先端のパフォーマンスを実現し、GPS、Adapter Tuning、LoRAといった既存の手法を超越している。
論文 参考訳(メタデータ) (2025-06-14T14:41:03Z) - A Sensitivity-Driven Expert Allocation Method in LoRA-MoE for Efficient Fine-Tuning [0.6906005491572401]
パラメータ感度のLoRA-SMoEに基づいて専門家数を割当てる手法を提案する。
実験の結果,LoRA-SMoE手法はトレーニング可能なパラメータの数を減らしながらモデル性能を向上させることができることがわかった。
論文 参考訳(メタデータ) (2025-05-06T13:22:46Z) - IterIS: Iterative Inference-Solving Alignment for LoRA Merging [14.263218227928729]
低ランク適応(LoRA)は、特定の下流タスクのために様々な領域にまたがる大きなモデルを微調整するために広く使われている。
LoRAマージは、データのプライバシを維持しながら複数のLoRAを統一アダプタに結合することで、効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-21T19:04:02Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - EDGE-LLM: Enabling Efficient Large Language Model Adaptation on Edge Devices via Layerwise Unified Compression and Adaptive Layer Tuning and Voting [12.006890185810322]
本稿では,エッジデバイス上での安価かつ効率的なLLM適応を実現するために,Edge-LLMと呼ばれる計算およびメモリ効率の高いLLMチューニングフレームワークを提案する。
具体的には,レイヤワイド統一圧縮(LUC)技術を用いて,レイヤワイドプルーニング空間と量子化ビット幅ポリシを生成して計算オーバーヘッドを削減する,(2)バックプロパゲーション深さを減らしてメモリオーバーヘッドを削減する適応層チューニングと投票方式,(3)LUCが導入した不規則な計算パターンと適応層チューニングを補完するハードウェアスケジューリング戦略,の3つのコアコンポーネントを特徴とする。
論文 参考訳(メタデータ) (2024-06-22T06:51:47Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections [35.133698935322634]
大規模言語モデル(LLM)は、最近、多くの言語処理タスクに対処するための強力なツールとして登場した。
勾配勾配勾配を用いた効率的なモデル収束に必要な重要な成分を同定し,特徴付ける。
この結果から, 微調整と事前学習の両方のための, 安価かつメモリ効率のよいアルゴリズムが得られた。
論文 参考訳(メタデータ) (2024-05-28T09:23:14Z) - HiRE: High Recall Approximate Top-$k$ Estimation for Efficient LLM
Inference [68.59839755875252]
HiREは2つの新しいコンポーネントから構成される: (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (ii) DA-TOP-$k$: 効率的なマルチデバイス近似トップ-k$演算子) (i) (i) (i) (i) (i) (i) (i) DA-TOP-$k$演算子) 。
我々は、10億のパラメータモデルにおいて、HiREがソフトマックスとフィードフォワード層の両方に適用され、ほぼ一致した事前学習と下流の精度を実現し、1台のTPUv5eデバイスで1.47Times$の推論遅延を高速化することを示した。
論文 参考訳(メタデータ) (2024-02-14T18:04:36Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
バックボーンを介して勾配をバックプロパゲートしない適応法を提案する。
凍結した、事前訓練されたバックボーンの機能を利用する軽量ネットワークを並列に設計することで、これを実現する。
論文 参考訳(メタデータ) (2024-02-05T10:55:47Z) - Fine-Tuning Language Models with Just Forward Passes [92.04219196752007]
微調整言語モデル(LM)は、様々な下流タスクで成功したが、LMのサイズが大きくなるにつれて、バックプロパゲーションは大量のメモリを必要とする。
本稿では,メモリ効率の高いゼロソーダ(MeZO)を提案する。
論文 参考訳(メタデータ) (2023-05-27T02:28:10Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
分散を低減した行列生成のために, WTA-CRS と呼ばれる新しい非バイアス推定系を提案する。
我々の研究は、チューニング変換器の文脈において、提案した推定器が既存のものよりも低い分散を示すという理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-05-24T15:52:08Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。