Stalactite: Toolbox for Fast Prototyping of Vertical Federated Learning Systems
- URL: http://arxiv.org/abs/2409.15558v2
- Date: Thu, 3 Oct 2024 10:40:23 GMT
- Title: Stalactite: Toolbox for Fast Prototyping of Vertical Federated Learning Systems
- Authors: Anastasiia Zakharova, Dmitriy Alexandrov, Maria Khodorchenko, Nikolay Butakov, Alexey Vasilev, Maxim Savchenko, Alexander Grigorievskiy,
- Abstract summary: We present emphStalactite - an open-source framework for Vertical Federated Learning (VFL) systems.
VFL is a type of FL where data samples are divided by features across several data owners.
We demonstrate its use on a real-world recommendation datasets.
- Score: 37.11550251825938
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) models trained on datasets owned by different organizations and physically located in remote databases offer benefits in many real-world use cases. State regulations or business requirements often prevent data transfer to a central location, making it difficult to utilize standard machine learning algorithms. Federated Learning (FL) is a technique that enables models to learn from distributed datasets without revealing the original data. Vertical Federated learning (VFL) is a type of FL where data samples are divided by features across several data owners. For instance, in a recommendation task, a user can interact with various sets of items, and the logs of these interactions are stored by different organizations. In this demo paper, we present \emph{Stalactite} - an open-source framework for VFL that provides the necessary functionality for building prototypes of VFL systems. It has several advantages over the existing frameworks. In particular, it allows researchers to focus on the algorithmic side rather than engineering and to easily deploy learning in a distributed environment. It implements several VFL algorithms and has a built-in homomorphic encryption layer. We demonstrate its use on a real-world recommendation datasets.
Related papers
- Semi-Supervised Federated Learning for Keyword Spotting [15.044022869136262]
Keywords Spotting (KWS) is a critical aspect of audio-based applications on mobile devices and virtual assistants.
Recent developments in Federated Learning (FL) have significantly expanded the ability to train machine learning models.
arXiv Detail & Related papers (2023-05-09T00:46:12Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - TorchFL: A Performant Library for Bootstrapping Federated Learning
Experiments [4.075095403704456]
We introduce TorchFL, a performant library for bootstrapping federated learning experiments.
TorchFL is built on a bottom-up design using PyTorch and Lightning.
Being built on a bottom-up design using PyTorch and Lightning, TorchFL provides ready-to-use abstractions for models, datasets, and FL algorithms.
arXiv Detail & Related papers (2022-11-01T20:31:55Z) - NVIDIA FLARE: Federated Learning from Simulation to Real-World [11.490933081543787]
We created NVIDIA FLARE as an open-source development kit (SDK) to make it easier for data scientists to use FL in their research and real-world applications.
The SDK includes solutions for state-of-the-art FL algorithms and federated machine learning approaches.
arXiv Detail & Related papers (2022-10-24T14:30:50Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in
Realistic Healthcare Settings [51.09574369310246]
Federated Learning (FL) is a novel approach enabling several clients holding sensitive data to collaboratively train machine learning models.
We propose a novel cross-silo dataset suite focused on healthcare, FLamby, to bridge the gap between theory and practice of cross-silo FL.
Our flexible and modular suite allows researchers to easily download datasets, reproduce results and re-use the different components for their research.
arXiv Detail & Related papers (2022-10-10T12:17:30Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - BlindFL: Vertical Federated Machine Learning without Peeking into Your
Data [20.048695060411774]
Vertical federated learning (VFL) describes a case where ML models are built upon the private data of different participated parties.
We introduce BlindFL, a novel framework for VFL training and inference.
We show that BlindFL supports diverse datasets and models efficiently whilst achieving robust privacy guarantees.
arXiv Detail & Related papers (2022-06-16T07:26:50Z) - Multi-VFL: A Vertical Federated Learning System for Multiple Data and
Label Owners [10.507522234243021]
We propose a novel method, Multi Vertical Federated Learning (Multi-VFL), to train VFL models when there are multiple data and label owners.
Our results show that using adaptive datasets for model aggregation fastens convergence and improves accuracy.
arXiv Detail & Related papers (2021-06-10T03:00:57Z) - FedML: A Research Library and Benchmark for Federated Machine Learning [55.09054608875831]
Federated learning (FL) is a rapidly growing research field in machine learning.
Existing FL libraries cannot adequately support diverse algorithmic development.
We introduce FedML, an open research library and benchmark to facilitate FL algorithm development and fair performance comparison.
arXiv Detail & Related papers (2020-07-27T13:02:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.