論文の概要: Reinforcement Feature Transformation for Polymer Property Performance Prediction
- arxiv url: http://arxiv.org/abs/2409.15616v1
- Date: Mon, 23 Sep 2024 23:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 11:32:56.036672
- Title: Reinforcement Feature Transformation for Polymer Property Performance Prediction
- Title(参考訳): 高分子特性予測のための強化特性変換
- Authors: Xuanming Hu, Dongjie Wang, Wangyang Ying, Yanjie Fu,
- Abstract要約: 既存の機械学習モデルは、低品質のポリマーデータセットによるポリマー表現を効果的に学習する際の課題に直面している。
本研究は, 最適かつ説明可能な記述子表現空間を再構築することにより, 高分子特性性能予測タスクの改善に焦点をあてる。
- 参考スコア(独自算出の注目度): 22.87577374767465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polymer property performance prediction aims to forecast specific features or attributes of polymers, which has become an efficient approach to measuring their performance. However, existing machine learning models face challenges in effectively learning polymer representations due to low-quality polymer datasets, which consequently impact their overall performance. This study focuses on improving polymer property performance prediction tasks by reconstructing an optimal and explainable descriptor representation space. Nevertheless, prior research such as feature engineering and representation learning can only partially solve this task since they are either labor-incentive or unexplainable. This raises two issues: 1) automatic transformation and 2) explainable enhancement. To tackle these issues, we propose our unique Traceable Group-wise Reinforcement Generation Perspective. Specifically, we redefine the reconstruction of the representation space into an interactive process, combining nested generation and selection. Generation creates meaningful descriptors, and selection eliminates redundancies to control descriptor sizes. Our approach employs cascading reinforcement learning with three Markov Decision Processes, automating descriptor and operation selection, and descriptor crossing. We utilize a group-wise generation strategy to explore and enhance reward signals for cascading agents. Ultimately, we conduct experiments to indicate the effectiveness of our proposed framework.
- Abstract(参考訳): ポリマー特性特性予測は, ポリマーの特性や特性を予測することを目的としており, それらの特性を測定するための効率的なアプローチとなっている。
しかし、既存の機械学習モデルは、低品質のポリマーデータセットにより、ポリマー表現を効果的に学習する際の課題に直面し、その結果、全体的なパフォーマンスに影響を及ぼす。
本研究は, 最適かつ説明可能な記述子表現空間を再構築することにより, 高分子特性性能予測タスクの改善に焦点をあてる。
それでも、機能工学や表現学習といった先行研究は、労働インセンティブか説明不能かのいずれかであるため、この課題を部分的には解決できない。
これは2つの問題を提起する。
1【自動変換】
2)説明可能な強化。
これらの課題に対処するため、我々は独自のTraceable Group-wise Reinforcement Generation Perspectiveを提案する。
具体的には、ネスト生成と選択を組み合わせて、表現空間の再構成をインタラクティブなプロセスに再定義する。
生成は意味のある記述子を生成し、選択は記述子のサイズを制御する冗長性を排除します。
提案手法では,3つのマルコフ決定プロセスを用いたカスケード強化学習,ディスクリプタと操作選択の自動化,およびディスクリプタ交差を用いた。
我々は、グループワイズ生成戦略を用いて、カスケードエージェントに対する報酬信号の探索と強化を行う。
最終的に、提案フレームワークの有効性を示す実験を行う。
関連論文リスト
- Uniting contrastive and generative learning for event sequences models [51.547576949425604]
本研究では,2つの自己指導型学習手法 – 例えば,コントラスト学習と,潜在空間におけるマスクイベントの復元に基づく生成的アプローチ – の統合について検討する。
いくつかの公開データセットで行った実験は、シーケンス分類と次点型予測に焦点を合わせ、統合された手法が個々の手法と比較して優れた性能を達成することを示した。
論文 参考訳(メタデータ) (2024-08-19T13:47:17Z) - PolyCL: Contrastive Learning for Polymer Representation Learning via Explicit and Implicit Augmentations [1.7695773264807546]
ラベルを使わずに高品質なポリマー表現を学習するための,自己指導型コントラスト学習パラダイムであるPolyCLを提案する。
我々のモデルは、学習性能を向上させるために、明示的かつ暗黙的な拡張戦略を組み合わせる。
論文 参考訳(メタデータ) (2024-08-14T13:43:22Z) - Unifying Feature and Cost Aggregation with Transformers for Semantic and Visual Correspondence [51.54175067684008]
本稿では,高密度マッチングタスク用に設計されたTransformerベースの積分機能とコスト集約ネットワークを提案する。
まず, 特徴集約とコスト集約が異なる特徴を示し, 双方の集約プロセスの司法的利用から生じる実質的な利益の可能性を明らかにした。
本フレームワークは意味マッチングのための標準ベンチマークで評価され,また幾何マッチングにも適用された。
論文 参考訳(メタデータ) (2024-03-17T07:02:55Z) - Feature Interaction Aware Automated Data Representation Transformation [27.26916497306978]
我々は,マルコフ決定過程をカスケードした階層的強化学習構造を開発し,特徴選択と操作選択を自動化する。
我々は、選択された特徴間の相互作用強度に基づいてエージェントに報酬を与える。その結果、人間の意思決定をエミュレートする特徴空間をインテリジェントかつ効率的に探索する。
論文 参考訳(メタデータ) (2023-09-29T06:48:16Z) - Traceable Group-Wise Self-Optimizing Feature Transformation Learning: A
Dual Optimization Perspective [33.45878576396101]
特徴変換は、既存の特徴を数学的に洗練することにより、効果的な表現空間を再構築することを目的としている。
既存の研究は主にドメイン知識に基づく特徴工学や学習潜在表現に重点を置いている。
最初の作業は、新しい自己最適化フレームワークを導入することで、この課題への先駆的な一歩を踏み出したのです。
論文 参考訳(メタデータ) (2023-06-29T12:29:21Z) - Cycle Consistency Driven Object Discovery [75.60399804639403]
本研究では,シーンの各オブジェクトが異なるスロットに関連付けられなければならない制約を明示的に最適化する手法を提案する。
これらの一貫性目標を既存のスロットベースのオブジェクト中心手法に統合することにより、オブジェクト発見性能を大幅に改善することを示す。
提案手法は,オブジェクト発見を改善するだけでなく,下流タスクのよりリッチな機能も提供することを示唆している。
論文 参考訳(メタデータ) (2023-06-03T21:49:06Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
我々はtextbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL) という効果的なフレームワークを提案する。
MA2CLは、潜伏空間におけるマスクされたエージェント観察を再構築することにより、時間的およびエージェントレベルの予測の両方の学習表現を奨励する。
提案手法は,様々なMARLアルゴリズムの性能とサンプル効率を大幅に向上させ,様々な視覚的,状態的シナリオにおいて,他の手法よりも優れる。
論文 参考訳(メタデータ) (2023-06-03T05:32:19Z) - Self-Optimizing Feature Transformation [33.458785763961004]
特徴変換は、既存の特徴を数学的に変換することで、優れた表現(特徴)空間を抽出することを目的としている。
現在の研究は、ドメイン知識に基づく特徴工学や学習潜在表現に焦点を当てている。
特徴変換のための自己最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-16T16:50:41Z) - Group-wise Reinforcement Feature Generation for Optimal and Explainable
Representation Space Reconstruction [25.604176830832586]
我々は表現空間の再構成をネストした特徴生成と選択の対話的なプロセスに再構成する。
我々は、機能群、操作群、および他の機能群を横断して新機能を生成するグループワイズ生成戦略を設計する。
システムの有効性, 効率, トレーサビリティ, 明示性を実証するための広範な実験を行った。
論文 参考訳(メタデータ) (2022-05-28T21:34:14Z) - Self-Promoted Prototype Refinement for Few-Shot Class-Incremental
Learning [81.10531943939365]
クラスインクリメンタルな学習は、サンプルが少ないと新しいクラスを認識し、古いクラスを忘れないことである。
本稿では,様々なエピソードに特徴表現を適応させる新しいインクリメンタルなプロトタイプ学習手法を提案する。
3つのベンチマークデータセットの実験では、上記の段階的なパフォーマンスを示し、それぞれ13%、17%、11%のマージンで最先端のメソッドを上回っている。
論文 参考訳(メタデータ) (2021-07-19T14:31:33Z) - Polymers for Extreme Conditions Designed Using Syntax-Directed
Variational Autoencoders [53.34780987686359]
現在、機械学習ツールは、望まれる特性を持つ材料候補を事実上スクリーニングするために使用される。
このアプローチは非効率であり、人間の想像力が知覚できる候補によって厳しく制約されている。
文法指向の変分オートエンコーダ(VAE)とガウス過程回帰(GPR)モデルを用いて、3つの極端な条件下で頑健なポリマーを発見する。
論文 参考訳(メタデータ) (2020-11-04T21:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。