Ultrabright fiber-coupled ploarization-entangled photon source with spectral brightness surpassing 2.0 MHz/mW/nm
- URL: http://arxiv.org/abs/2409.15620v1
- Date: Mon, 23 Sep 2024 23:50:03 GMT
- Title: Ultrabright fiber-coupled ploarization-entangled photon source with spectral brightness surpassing 2.0 MHz/mW/nm
- Authors: Kyungdeuk Park, Jungmo Lee, Dong-Gil Im, Dongkyu Kim, Yong Sup Ihn,
- Abstract summary: We present an ultrabright polarization-entangled photon source that is optimally coupled into single-mode fibers.
By employing a simple mode-matching optical setup, we optimize the SMF coupling and heralding efficiencies of the photon-pairs.
This represents the highest spectral brightness of SPDC photons generated using a CW laser pumped bulk crystal to date.
- Score: 0.6581049960856515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an ultrabright polarization-entangled photon source that is optimally coupled into single-mode fibers (SMFs). This study theoretically and experimentally examines the characteristics of spontaneous parametric down-conversion (SPDC) photons, including their spectrum, bandwidth, emission angle, and intensity, as functions of crystal length, temperature and beam waist condition. Notably, we measure the collinear spatial modes of photon-pairs and collection optics under various beam waist conditions and analyze them using a collinear Gaussian approximation model. By employing a simple mode-matching optical setup, we optimize the SMF coupling and heralding efficiencies of the photon-pairs. Consequently, we achieve a spectral brightness exceeding 2.0 MHz/mW/nm from a fiber-coupled entangled photon source, utilizing a 30-mm ppKTP crystal inside a polarization Sagnac interferometer. This represents the highest spectral brightness of SPDC photons generated using a CW laser pumped bulk crystal to date. Polarization entanglement was verified by a quantum state tomography and a polarization-correlation measurement. The fidelity of the entangled state is measured to be 97.8 % and the Bell-CHSH value S = 2.782 +- 0.04. The results obtained here provide practical insights for designing high-performance SPDC sources for satellite-based communication and long-distance optical links with extremely high-photon loss.
Related papers
- Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Bright entangled photon source without stringent crystal temperature and
laser frequency stabilization [3.49112071745966]
Entangled photon sources are the major building block for a variety of quantum communication protocols.
We report a bright, stable entangled photon source with a relaxed requirement of crystal temperature and laser wavelength stabilization.
The generic scheme can be used for non-collinear SPDC photons in all crystals to develop EPS at any wavelength and timescales.
arXiv Detail & Related papers (2022-07-13T10:51:17Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Submegahertz spectral width photon pair source based on fused silica
microspheres [0.0]
High efficiency, sub-MHz bandwidth photon pair generators will enable the field of quantum technology to transition from laboratory demonstrations to transformational applications involving information transfer from photons to atoms.
We use an ultra-high quality factor (Q) fused silica microsphere resonant cavity to form a photon pair generator.
We demonstrate the extraction of the spectral profile of a single peak in the single-photon frequency comb from a measurement of the signal-idler time of emission distribution.
arXiv Detail & Related papers (2021-10-25T23:56:19Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Mid-infrared spectrally-uncorrelated biphotons generation from doped
PPLN: a theoretical investigation [2.4800325353244363]
We theoretically investigate the preparation of spectrally-uncorrelated biphotons from a spontaneous down-conversion process using doped LN crystals.
It is found that the doping ratio has a substantial impact on the group-velocity-matching (GVM) wavelengths.
The spectrally uncorrelated biphotons can be used to prepare pure single-photon source and entangled photon source.
arXiv Detail & Related papers (2020-12-17T01:54:39Z) - Spectral characterization of photon-pair sources via classical
sum-frequency generation [0.0]
High-resolution spectral measurement is a key technique for engineering spectral properties of photons.
We demonstrate spectral measurements and optimization of frequency-entangled photon pairs produced via spontaneous parametric downconversion (SPDC)
A joint phase-matching spectrum of a nonlinear crystal around 1580 nm is captured with a 40 pm resolution and a > 40 dB signal-to-noise ratio.
arXiv Detail & Related papers (2020-10-15T11:52:12Z) - Raman-free fibered photon-pair source [0.0]
Raman-scattering noise in silica has been the key obstacle toward the realisation of high quality fiber-based photon-pair sources.
This work demonstrates that hollow-core photonic crystal fiber is an excellent platform to design high quality photon-pair sources.
arXiv Detail & Related papers (2020-01-06T12:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.