Double-Path Adaptive-correlation Spatial-Temporal Inverted Transformer for Stock Time Series Forecasting
- URL: http://arxiv.org/abs/2409.15662v1
- Date: Tue, 24 Sep 2024 01:53:22 GMT
- Title: Double-Path Adaptive-correlation Spatial-Temporal Inverted Transformer for Stock Time Series Forecasting
- Authors: Wenbo Yan, Ying Tan,
- Abstract summary: We propose a Double-Path Adaptive-correlation Spatial-Temporal Inverted Transformer (DPA-STIFormer) to more comprehensively extract dynamic spatial information from stock data.
Experiments conducted on four stock market datasets demonstrate state-of-the-art results, validating the model's superior capability in uncovering latent temporal-correlation patterns.
- Score: 1.864621482724548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial-temporal graph neural networks (STGNNs) have achieved significant success in various time series forecasting tasks. However, due to the lack of explicit and fixed spatial relationships in stock prediction tasks, many STGNNs fail to perform effectively in this domain. While some STGNNs learn spatial relationships from time series, they often lack comprehensiveness. Research indicates that modeling time series using feature changes as tokens reveals entirely different information compared to using time steps as tokens. To more comprehensively extract dynamic spatial information from stock data, we propose a Double-Path Adaptive-correlation Spatial-Temporal Inverted Transformer (DPA-STIFormer). DPA-STIFormer models each node via continuous changes in features as tokens and introduces a Double Direction Self-adaptation Fusion mechanism. This mechanism decomposes node encoding into temporal and feature representations, simultaneously extracting different spatial correlations from a double path approach, and proposes a Double-path gating mechanism to fuse these two types of correlation information. Experiments conducted on four stock market datasets demonstrate state-of-the-art results, validating the model's superior capability in uncovering latent temporal-correlation patterns.
Related papers
- Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention.
Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies.
This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN.
arXiv Detail & Related papers (2024-08-23T14:06:30Z) - Robust Multivariate Time Series Forecasting against Intra- and Inter-Series Transitional Shift [40.734564394464556]
We present a unified Probabilistic Graphical Model to Jointly capturing intra-/inter-series correlations and modeling the time-variant transitional distribution.
We validate the effectiveness and efficiency of JointPGM through extensive experiments on six highly non-stationary MTS datasets.
arXiv Detail & Related papers (2024-07-18T06:16:03Z) - Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
Time series prediction is crucial for understanding and forecasting complex dynamics in various domains.
We introduce GridTST, a model that combines the benefits of two approaches using innovative multi-directional attentions.
The model consistently delivers state-of-the-art performance across various real-world datasets.
arXiv Detail & Related papers (2024-05-22T16:41:21Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
We propose a novel anomaly detection method, named EdgeConvFormer, which integrates stacked Time2vec embedding, dynamic graph CNN, and Transformer to extract global and local spatial-time information.
Experiments demonstrate that EdgeConvFormer can learn the spatial-temporal modeling from multivariate time series data and achieve better anomaly detection performance than the state-of-the-art approaches on many real-world datasets of different scales.
arXiv Detail & Related papers (2023-12-04T08:38:54Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Averaging Spatio-temporal Signals using Optimal Transport and Soft
Alignments [110.79706180350507]
We show that our proposed loss can be used to define temporal-temporal baryechecenters as Fr'teche means duality.
Experiments on handwritten letters and brain imaging data confirm our theoretical findings.
arXiv Detail & Related papers (2022-03-11T09:46:22Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Spectral Temporal Graph Neural Network for Multivariate Time-series
Forecasting [19.50001395081601]
StemGNN captures inter-series correlations and temporal dependencies.
It can be predicted effectively by convolution and sequential learning modules.
We conduct extensive experiments on ten real-world datasets to demonstrate the effectiveness of StemGNN.
arXiv Detail & Related papers (2021-03-13T13:44:20Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Forecast Network-Wide Traffic States for Multiple Steps Ahead: A Deep
Learning Approach Considering Dynamic Non-Local Spatial Correlation and
Non-Stationary Temporal Dependency [6.019104024723682]
This research studies two particular problems in traffic forecasting: (1) capture the dynamic and non-local spatial correlation between traffic links and (2) model the dynamics of temporal dependency for accurate multiple steps ahead predictions.
We propose a deep learning framework named Spatial-Temporal Sequence to Sequence model (STSeq2Seq) to address these issues.
This model builds on sequence to sequence (seq2seq) architecture to capture temporal feature and relies on graph convolution for aggregating spatial information.
arXiv Detail & Related papers (2020-04-06T03:40:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.