Autonomous Hiking Trail Navigation via Semantic Segmentation and Geometric Analysis
- URL: http://arxiv.org/abs/2409.15671v1
- Date: Tue, 24 Sep 2024 02:21:10 GMT
- Title: Autonomous Hiking Trail Navigation via Semantic Segmentation and Geometric Analysis
- Authors: Camndon Reed, Christopher Tatsch, Jason N. Gross, Yu Gu,
- Abstract summary: This work introduces a novel approach to autonomous hiking trail navigation that balances trail adherence with the flexibility to adapt to off-trail routes when necessary.
The solution is a Traversability Analysis module that integrates semantic data from camera images with geometric information from LiDAR to create a comprehensive understanding of the surrounding terrain.
A planner uses this traversability map to navigate safely, adhering to trails while allowing off-trail movement when necessary to avoid on-trail hazards or for safe off-trail shortcuts.
- Score: 2.1149122372776743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural environments pose significant challenges for autonomous robot navigation, particularly due to their unstructured and ever-changing nature. Hiking trails, with their dynamic conditions influenced by weather, vegetation, and human traffic, represent one such challenge. This work introduces a novel approach to autonomous hiking trail navigation that balances trail adherence with the flexibility to adapt to off-trail routes when necessary. The solution is a Traversability Analysis module that integrates semantic data from camera images with geometric information from LiDAR to create a comprehensive understanding of the surrounding terrain. A planner uses this traversability map to navigate safely, adhering to trails while allowing off-trail movement when necessary to avoid on-trail hazards or for safe off-trail shortcuts. The method is evaluated through simulation to determine the balance between semantic and geometric information in traversability estimation. These simulations tested various weights to assess their impact on navigation performance across different trail scenarios. Weights were then validated through field tests at the West Virginia University Core Arboretum, demonstrating the method's effectiveness in a real-world environment.
Related papers
- IN-Sight: Interactive Navigation through Sight [20.184155117341497]
IN-Sight is a novel approach to self-supervised path planning.
It calculates traversability scores and incorporates them into a semantic map.
To precisely navigate around obstacles, IN-Sight employs a local planner.
arXiv Detail & Related papers (2024-08-01T07:27:54Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - RoadRunner -- Learning Traversability Estimation for Autonomous Off-road Driving [13.101416329887755]
We present RoadRunner, a framework capable of predicting terrain traversability and an elevation map directly from camera and LiDAR sensor inputs.
RoadRunner enables reliable autonomous navigation, by fusing sensory information, handling of uncertainty, and generation of contextually informed predictions.
We demonstrate the effectiveness of RoadRunner in enabling safe and reliable off-road navigation at high speeds in multiple real-world driving scenarios through unstructured desert environments.
arXiv Detail & Related papers (2024-02-29T16:47:54Z) - WildGEN: Long-horizon Trajectory Generation for Wildlife [3.8986045286948]
Trajectory generation is an important concern in pedestrian, vehicle, and wildlife movement studies.
We introduce WildGEN: a conceptual framework that addresses this challenge by employing a Variational Auto-encoders (VAEs) based method.
A subsequent post-processing step of the generated trajectories is performed based on smoothing filters to reduce excessive wandering.
arXiv Detail & Related papers (2023-12-30T05:08:28Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - URA*: Uncertainty-aware Path Planning using Image-based Aerial-to-Ground
Traversability Estimation for Off-road Environments [4.826948318242962]
This research proposes an uncertainty-aware path planning method, URA* using aerial images for autonomous navigation in off-road environments.
The proposed planner also incorporates replanning techniques to allow rapid replanning during online robot operation.
Results show that the proposed image segmentation and planning methods outperform conventional planning algorithms in terms of the quality and feasibility of the initial path.
arXiv Detail & Related papers (2023-09-15T23:52:45Z) - WayFAST: Traversability Predictive Navigation for Field Robots [5.914664791853234]
We present a self-supervised approach for learning to predict traversable paths for wheeled mobile robots.
Our key inspiration is that traction can be estimated for rolling robots using kinodynamic models.
We show that our training pipeline based on online traction estimates is more data-efficient than other-based methods.
arXiv Detail & Related papers (2022-03-22T22:02:03Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
Long-range navigation requires both planning and reasoning about local traversability.
We propose a learning-based approach that integrates learning and planning.
ViKiNG can leverage its image-based learned controller and goal-directed to navigate to goals up to 3 kilometers away.
arXiv Detail & Related papers (2022-02-23T02:14:23Z) - Augmented reality navigation system for visual prosthesis [67.09251544230744]
We propose an augmented reality navigation system for visual prosthesis that incorporates a software of reactive navigation and path planning.
It consists on four steps: locating the subject on a map, planning the subject trajectory, showing it to the subject and re-planning without obstacles.
Results show how our augmented navigation system help navigation performance by reducing the time and distance to reach the goals, even significantly reducing the number of obstacles collisions.
arXiv Detail & Related papers (2021-09-30T09:41:40Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - Learning to Move with Affordance Maps [57.198806691838364]
The ability to autonomously explore and navigate a physical space is a fundamental requirement for virtually any mobile autonomous agent.
Traditional SLAM-based approaches for exploration and navigation largely focus on leveraging scene geometry.
We show that learned affordance maps can be used to augment traditional approaches for both exploration and navigation, providing significant improvements in performance.
arXiv Detail & Related papers (2020-01-08T04:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.