URA*: Uncertainty-aware Path Planning using Image-based Aerial-to-Ground
Traversability Estimation for Off-road Environments
- URL: http://arxiv.org/abs/2309.08814v1
- Date: Fri, 15 Sep 2023 23:52:45 GMT
- Title: URA*: Uncertainty-aware Path Planning using Image-based Aerial-to-Ground
Traversability Estimation for Off-road Environments
- Authors: Charles Moore, Shaswata Mitra, Nisha Pillai, Marc Moore, Sudip Mittal,
Cindy Bethel, Jingdao Chen
- Abstract summary: This research proposes an uncertainty-aware path planning method, URA* using aerial images for autonomous navigation in off-road environments.
The proposed planner also incorporates replanning techniques to allow rapid replanning during online robot operation.
Results show that the proposed image segmentation and planning methods outperform conventional planning algorithms in terms of the quality and feasibility of the initial path.
- Score: 4.826948318242962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major challenge with off-road autonomous navigation is the lack of maps or
road markings that can be used to plan a path for autonomous robots. Classical
path planning methods mostly assume a perfectly known environment without
accounting for the inherent perception and sensing uncertainty from detecting
terrain and obstacles in off-road environments. Recent work in computer vision
and deep neural networks has advanced the capability of terrain traversability
segmentation from raw images; however, the feasibility of using these noisy
segmentation maps for navigation and path planning has not been adequately
explored. To address this problem, this research proposes an uncertainty-aware
path planning method, URA* using aerial images for autonomous navigation in
off-road environments. An ensemble convolutional neural network (CNN) model is
first used to perform pixel-level traversability estimation from aerial images
of the region of interest. The traversability predictions are represented as a
grid of traversal probability values. An uncertainty-aware planner is then
applied to compute the best path from a start point to a goal point given these
noisy traversal probability estimates. The proposed planner also incorporates
replanning techniques to allow rapid replanning during online robot operation.
The proposed method is evaluated on the Massachusetts Road Dataset, the
DeepGlobe dataset, as well as a dataset of aerial images from off-road proving
grounds at Mississippi State University. Results show that the proposed image
segmentation and planning methods outperform conventional planning algorithms
in terms of the quality and feasibility of the initial path, as well as the
quality of replanned paths.
Related papers
- Autonomous Hiking Trail Navigation via Semantic Segmentation and Geometric Analysis [2.1149122372776743]
This work introduces a novel approach to autonomous hiking trail navigation that balances trail adherence with the flexibility to adapt to off-trail routes when necessary.
The solution is a Traversability Analysis module that integrates semantic data from camera images with geometric information from LiDAR to create a comprehensive understanding of the surrounding terrain.
A planner uses this traversability map to navigate safely, adhering to trails while allowing off-trail movement when necessary to avoid on-trail hazards or for safe off-trail shortcuts.
arXiv Detail & Related papers (2024-09-24T02:21:10Z) - UFO: Uncertainty-aware LiDAR-image Fusion for Off-road Semantic Terrain
Map Estimation [2.048226951354646]
This paper presents a learning-based fusion method for generating dense terrain classification maps in BEV.
Our approach enhances the accuracy of semantic maps generated from an RGB image and a single-sweep LiDAR scan.
arXiv Detail & Related papers (2024-03-05T04:20:03Z) - Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation [10.898724668444125]
We present a learning-based approach capable of predicting terrain elevation maps at long-range using only onboard egocentric images in real-time.
We experimentally validate the applicability of our proposed approach for autonomous offroad robotic navigation in complex and unstructured terrain.
arXiv Detail & Related papers (2024-01-30T22:37:24Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - NNPP: A Learning-Based Heuristic Model for Accelerating Optimal Path Planning on Uneven Terrain [5.337162499594818]
We propose the NNPP model for computing the region, enabling foundation algorithms like Astar to find the optimal path solely within this reduced search space.
The NNPP model learns information about start and goal locations, as well as map representations, from numerous pre-annotated optimal path demonstrations.
It is able to textcolorrevisionaccelerate path planning on novel maps.
arXiv Detail & Related papers (2023-08-09T08:31:05Z) - POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
Passable Obstacles Aware (POA) planner is a novel navigation method for two-wheeled robots in a cluttered environment.
Our algorithm allows two-wheeled robots to find a path through passable obstacles.
arXiv Detail & Related papers (2023-07-16T19:44:27Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
We propose a novel way to integrate deep learning into exploration by leveraging 3D scene completion for informed, safe, and interpretable mapping and planning.
We show that our method can speed up coverage of an environment by 73% compared to the baselines with only minimal reduction in map accuracy.
Even if scene completions are not included in the final map, we show that they can be used to guide the robot to choose more informative paths, speeding up the measurement of the scene with the robot's sensors by 35%.
arXiv Detail & Related papers (2022-08-17T14:19:33Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
Long-range navigation requires both planning and reasoning about local traversability.
We propose a learning-based approach that integrates learning and planning.
ViKiNG can leverage its image-based learned controller and goal-directed to navigate to goals up to 3 kilometers away.
arXiv Detail & Related papers (2022-02-23T02:14:23Z) - Neural Motion Planning for Autonomous Parking [6.1805402105389895]
This paper presents a hybrid motion planning strategy that combines a deep generative network with a conventional motion planning method.
The proposed method effectively learns the representations of a given state, and shows improvement in terms of algorithm performance.
arXiv Detail & Related papers (2021-11-12T14:29:38Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.