論文の概要: Applying Incremental Learning in Binary-Addition-Tree Algorithm for Dynamic Binary-State Network Reliability
- arxiv url: http://arxiv.org/abs/2409.15721v1
- Date: Tue, 24 Sep 2024 04:13:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 09:01:07.532722
- Title: Applying Incremental Learning in Binary-Addition-Tree Algorithm for Dynamic Binary-State Network Reliability
- Title(参考訳): 動的二項状態ネットワーク信頼性のための二項付加軌道アルゴリズムにおけるインクリメンタルラーニングの適用
- Authors: Wei-Chang Yeh,
- Abstract要約: Binary-Addition-Treeアルゴリズム(BAT)は、ネットワークの信頼性と最適化問題を解決する強力な暗黙列挙法である。
漸進的な学習を導入することで、新たなデータやネットワークの変更に直面すると、BATが適応し、そのパフォーマンスを反復的に改善できるようになります。
- 参考スコア(独自算出の注目度): 0.08158530638728499
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper presents a novel approach to enhance the Binary-Addition-Tree algorithm (BAT) by integrating incremental learning techniques. BAT, known for its simplicity in development, implementation, and application, is a powerful implicit enumeration method for solving network reliability and optimization problems. However, it traditionally struggles with dynamic and large-scale networks due to its static nature. By introducing incremental learning, we enable the BAT to adapt and improve its performance iteratively as it encounters new data or network changes. This integration allows for more efficient computation, reduced redundancy without searching minimal paths and cuts, and improves overall performance in dynamic environments. Experimental results demonstrate the effectiveness of the proposed method, showing significant improvements in both computational efficiency and solution quality compared to the traditional BAT and indirect algorithms, such as MP-based algorithms and MC-based algorithms.
- Abstract(参考訳): 本稿では,段階的な学習手法を統合することにより,BATアルゴリズム(Binary-Addition-Tree Algorithm)の高速化を図る。
BATは、開発、実装、アプリケーションにおける単純さで知られており、ネットワークの信頼性と最適化問題を解決する強力な暗黙列挙法である。
しかし、静的な性質のため、伝統的に動的で大規模なネットワークに苦しむ。
漸進的な学習を導入することで、新たなデータやネットワークの変更に直面すると、BATが適応し、そのパフォーマンスを反復的に改善できるようになります。
この統合により、より効率的な計算が可能になり、最小のパスやカットを検索することなく冗長性を低減し、動的環境における全体的なパフォーマンスを向上させることができる。
実験により,提案手法の有効性を実証し,従来のBATアルゴリズムや,MPアルゴリズムやMCアルゴリズムなどの間接アルゴリズムと比較して,計算効率と解法品質の両面で有意な改善が示された。
関連論文リスト
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
本稿では,反復的BONDと自己プレイアライメントの統一的なゲーム理論接続を明らかにする。
WINレート支配(WIN rate Dominance, WIND)という新しいフレームワークを構築し, 正規化利率支配最適化のためのアルゴリズムを多数提案する。
論文 参考訳(メタデータ) (2024-10-28T04:47:39Z) - Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
そこで本研究では,局所探索機能を組み込んだ2段階学習手法と集団最適化アルゴリズムを併用した新しい手法を提案する。
実験の結果,提案手法は最先端の勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-26T17:31:15Z) - Trapezoidal Gradient Descent for Effective Reinforcement Learning in Spiking Networks [10.422381897413263]
低消費電力特性と性能を持つスパイキングニューラルネットワーク(SNN)が注目を集めている。
強化学習の実践的応用の省エネを図るため,Pop-SAN と MDC-SAN のアルゴリズムが提案されている。
本稿では,スパイクネットワークの代替として,従来の安定した学習状態を保ちつつ,様々な信号力学下でのモデルの適応性と応答感度を高めることを目的とした,台形近似勾配法を提案する。
論文 参考訳(メタデータ) (2024-06-19T13:56:22Z) - Distilling Knowledge from Resource Management Algorithms to Neural
Networks: A Unified Training Assistance Approach [18.841969905928337]
本稿では,知識蒸留(KD)に基づくアルゴリズム蒸留(AD)法を提案する。
本研究は,無線通信システム最適化における従来の最適化洞察と新しいNN技術の統合の道を開くものである。
論文 参考訳(メタデータ) (2023-08-15T00:30:58Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - An Improved Reinforcement Learning Algorithm for Learning to Branch [12.27934038849211]
ブランチ・アンド・バウンド(B&B)は最適化の一般的な方法である。
本稿では,新しい強化学習に基づくB&Bアルゴリズムを提案する。
提案アルゴリズムの性能を3つの公開研究ベンチマークで評価した。
論文 参考訳(メタデータ) (2022-01-17T04:50:11Z) - ES-Based Jacobian Enables Faster Bilevel Optimization [53.675623215542515]
バイレベル最適化(BO)は多くの現代の機械学習問題を解決する強力なツールとして生まれてきた。
既存の勾配法では、ヤコビアンあるいはヘッセンベクトル計算による二階微分近似が必要となる。
本稿では,進化戦略(ES)に基づく新しいBOアルゴリズムを提案し,BOの過勾配における応答ヤコビ行列を近似する。
論文 参考訳(メタデータ) (2021-10-13T19:36:50Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
検証問題に基づくアルゴリズムを反復的に導入し、2つの分割戦略を探索する。
また、ニューラルネットワークの検証問題を単純化するために、ニューロンアクティベーションフェーズを利用する、高度に並列化可能な前処理アルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-04-17T20:21:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。