Teaching Tailored to Talent: Adverse Weather Restoration via Prompt Pool and Depth-Anything Constraint
- URL: http://arxiv.org/abs/2409.15739v1
- Date: Tue, 24 Sep 2024 04:46:18 GMT
- Title: Teaching Tailored to Talent: Adverse Weather Restoration via Prompt Pool and Depth-Anything Constraint
- Authors: Sixiang Chen, Tian Ye, Kai Zhang, Zhaohu Xing, Yunlong Lin, Lei Zhu,
- Abstract summary: We introduce a novel pipeline, T3-DiffWeather, to handle unpredictable weather input.
We employ a prompt pool that allows the network to autonomously combine sub-prompts to construct weather-prompts.
Our method achieves state-of-the-art performance across various synthetic and real-world datasets.
- Score: 15.733168323227174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in adverse weather restoration have shown potential, yet the unpredictable and varied combinations of weather degradations in the real world pose significant challenges. Previous methods typically struggle with dynamically handling intricate degradation combinations and carrying on background reconstruction precisely, leading to performance and generalization limitations. Drawing inspiration from prompt learning and the "Teaching Tailored to Talent" concept, we introduce a novel pipeline, T3-DiffWeather. Specifically, we employ a prompt pool that allows the network to autonomously combine sub-prompts to construct weather-prompts, harnessing the necessary attributes to adaptively tackle unforeseen weather input. Moreover, from a scene modeling perspective, we incorporate general prompts constrained by Depth-Anything feature to provide the scene-specific condition for the diffusion process. Furthermore, by incorporating contrastive prompt loss, we ensures distinctive representations for both types of prompts by a mutual pushing strategy. Experimental results demonstrate that our method achieves state-of-the-art performance across various synthetic and real-world datasets, markedly outperforming existing diffusion techniques in terms of computational efficiency.
Related papers
- WeatherGFM: Learning A Weather Generalist Foundation Model via In-context Learning [69.82211470647349]
We introduce the first generalist weather foundation model (WeatherGFM)
It addresses a wide spectrum of weather understanding tasks in a unified manner.
Our model can effectively handle up to ten weather understanding tasks, including weather forecasting, super-resolution, weather image translation, and post-processing.
arXiv Detail & Related papers (2024-11-08T09:14:19Z) - Diffusion Models for Monocular Depth Estimation: Overcoming Challenging Conditions [30.148969711689773]
We present a novel approach designed to address the complexities posed by challenging, out-of-distribution data in the single-image depth estimation task.
We systematically generate new, user-defined scenes with a comprehensive set of challenges and associated depth information.
This is achieved by leveraging cutting-edge text-to-image diffusion models with depth-aware control.
arXiv Detail & Related papers (2024-07-23T17:59:59Z) - Continual All-in-One Adverse Weather Removal with Knowledge Replay on a
Unified Network Structure [92.8834309803903]
In real-world applications, image degeneration caused by adverse weather is always complex and changes with different weather conditions from days and seasons.
We develop a novel continual learning framework with effective knowledge replay (KR) on a unified network structure.
It considers the characteristics of the image restoration task with multiple degenerations in continual learning, and the knowledge for different degenerations can be shared and accumulated.
arXiv Detail & Related papers (2024-03-12T03:50:57Z) - Typhoon Intensity Prediction with Vision Transformer [51.84456610977905]
We introduce "Typhoon Intensity Transformer" (Tint) to predict typhoon intensity accurately across space and time.
Tint uses self-attention mechanisms with global receptive fields per layer.
Experiments on a publicly available typhoon benchmark validate the efficacy of Tint.
arXiv Detail & Related papers (2023-11-28T03:11:33Z) - WeatherDepth: Curriculum Contrastive Learning for Self-Supervised Depth Estimation under Adverse Weather Conditions [42.99525455786019]
We propose WeatherDepth, a self-supervised robust depth estimation model with curriculum contrastive learning.
The proposed solution is proven to be easily incorporated into various architectures and demonstrates state-of-the-art (SoTA) performance on both synthetic and real weather datasets.
arXiv Detail & Related papers (2023-10-09T09:26:27Z) - DiffPrompter: Differentiable Implicit Visual Prompts for Semantic-Segmentation in Adverse Conditions [14.52296033767276]
We introduce DiffPrompter, a novel differentiable visual and latent prompting mechanism.
Our proposed $nabla$HFC image processing block excels particularly in adverse weather conditions.
arXiv Detail & Related papers (2023-10-06T11:53:04Z) - Exploring the Application of Large-scale Pre-trained Models on Adverse
Weather Removal [97.53040662243768]
We propose a CLIP embedding module to make the network handle different weather conditions adaptively.
This module integrates the sample specific weather prior extracted by CLIP image encoder together with the distribution specific information learned by a set of parameters.
arXiv Detail & Related papers (2023-06-15T10:06:13Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - DeFeat-Net: General Monocular Depth via Simultaneous Unsupervised
Representation Learning [65.94499390875046]
DeFeat-Net is an approach to simultaneously learn a cross-domain dense feature representation.
Our technique is able to outperform the current state-of-the-art with around 10% reduction in all error measures.
arXiv Detail & Related papers (2020-03-30T13:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.