Spatial-Temporal Mixture-of-Graph-Experts for Multi-Type Crime Prediction
- URL: http://arxiv.org/abs/2409.15764v1
- Date: Tue, 24 Sep 2024 05:41:11 GMT
- Title: Spatial-Temporal Mixture-of-Graph-Experts for Multi-Type Crime Prediction
- Authors: Ziyang Wu, Fan Liu, Jindong Han, Yuxuan Liang, Hao Liu,
- Abstract summary: We propose a Spatial-Temporal Mixture-of-Graph-Experts (ST-MoGE) framework for collective multiple-type crime prediction.
We introduce an attentive-gated Mixture-of-Graph-Experts (MGEs) module to capture the distinctive and shared crime patterns of each crime category.
Then, we propose Cross-Expert Contrastive Learning( CECL) to update the MGEs and force each expert to focus on specific pattern modeling.
- Score: 26.79981325208879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As various types of crime continue to threaten public safety and economic development, predicting the occurrence of multiple types of crimes becomes increasingly vital for effective prevention measures. Although extensive efforts have been made, most of them overlook the heterogeneity of different crime categories and fail to address the issue of imbalanced spatial distribution. In this work, we propose a Spatial-Temporal Mixture-of-Graph-Experts (ST-MoGE) framework for collective multiple-type crime prediction. To enhance the model's ability to identify diverse spatial-temporal dependencies and mitigate potential conflicts caused by spatial-temporal heterogeneity of different crime categories, we introduce an attentive-gated Mixture-of-Graph-Experts (MGEs) module to capture the distinctive and shared crime patterns of each crime category. Then, we propose Cross-Expert Contrastive Learning(CECL) to update the MGEs and force each expert to focus on specific pattern modeling, thereby reducing blending and redundancy. Furthermore, to address the issue of imbalanced spatial distribution, we propose a Hierarchical Adaptive Loss Re-weighting (HALR) approach to eliminate biases and insufficient learning of data-scarce regions. To evaluate the effectiveness of our methods, we conduct comprehensive experiments on two real-world crime datasets and compare our results with twelve advanced baselines. The experimental results demonstrate the superiority of our methods.
Related papers
- Ensemble Adversarial Defense via Integration of Multiple Dispersed Low Curvature Models [7.8245455684263545]
In this work, we aim to enhance ensemble diversity by reducing attack transferability.
We identify second-order gradients, which depict the loss curvature, as a key factor in adversarial robustness.
We introduce a novel regularizer to train multiple more-diverse low-curvature network models.
arXiv Detail & Related papers (2024-03-25T03:44:36Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Hyperbolic Face Anti-Spoofing [21.981129022417306]
We propose to learn richer hierarchical and discriminative spoofing cues in hyperbolic space.
For unimodal FAS learning, the feature embeddings are projected into the Poincar'e ball, and then the hyperbolic binary logistic regression layer is cascaded for classification.
To alleviate the vanishing gradient problem in hyperbolic space, a new feature clipping method is proposed to enhance the training stability of hyperbolic models.
arXiv Detail & Related papers (2023-08-17T17:18:21Z) - Decentralized Adversarial Training over Graphs [55.28669771020857]
The vulnerability of machine learning models to adversarial attacks has been attracting considerable attention in recent years.
This work studies adversarial training over graphs, where individual agents are subjected to varied strength perturbation space.
arXiv Detail & Related papers (2023-03-23T15:05:16Z) - Spatial-Temporal Sequential Hypergraph Network for Crime Prediction [56.41899180029119]
We propose Spatial-Temporal Sequential Hypergraph Network (ST-SHN) to collectively encode complex crime spatial-temporal patterns.
In particular, to handle spatial-temporal dynamics under the long-range and global context, we design a graph-structured message passing architecture.
We conduct extensive experiments on two real-world datasets, showing that our proposed ST-SHN framework can significantly improve the prediction performance.
arXiv Detail & Related papers (2022-01-07T12:46:50Z) - HAGEN: Homophily-Aware Graph Convolutional Recurrent Network for Crime
Forecasting [11.469930516486901]
We propose an end-to-end graph convolutional recurrent network called HAGEN with several novel designs for crime prediction.
Based on the homophily assumption of GNN, we propose a homophily-aware constraint to regularize the optimization of the region graph.
It also incorporates crime embedding to model the interdependencies between regions and crime categories.
arXiv Detail & Related papers (2021-09-27T07:46:05Z) - Contextual Fusion For Adversarial Robustness [0.0]
Deep neural networks are usually designed to process one particular information stream and susceptible to various types of adversarial perturbations.
We developed a fusion model using a combination of background and foreground features extracted in parallel from Places-CNN and Imagenet-CNN.
For gradient based attacks, our results show that fusion allows for significant improvements in classification without decreasing performance on unperturbed data.
arXiv Detail & Related papers (2020-11-18T20:13:23Z) - Shaping Deep Feature Space towards Gaussian Mixture for Visual
Classification [74.48695037007306]
We propose a Gaussian mixture (GM) loss function for deep neural networks for visual classification.
With a classification margin and a likelihood regularization, the GM loss facilitates both high classification performance and accurate modeling of the feature distribution.
The proposed model can be implemented easily and efficiently without using extra trainable parameters.
arXiv Detail & Related papers (2020-11-18T03:32:27Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.