Zero-shot forecasting of chaotic systems
- URL: http://arxiv.org/abs/2409.15771v2
- Date: Tue, 03 Dec 2024 03:41:01 GMT
- Title: Zero-shot forecasting of chaotic systems
- Authors: Yuanzhao Zhang, William Gilpin,
- Abstract summary: Foundation models pre-trained on vast amounts of time-series data from diverse domains.
We evaluate whether the zero-shot learning paradigm extends to the challenging task of forecasting chaotic systems.
- Score: 6.445605125467573
- License:
- Abstract: Time-series forecasting is a challenging problem that traditionally requires specialized models custom-trained for the specific task at hand. Recently, inspired by the success of large language models, foundation models pre-trained on vast amounts of time-series data from diverse domains have emerged as a promising candidate for general-purpose time-series forecasting. The defining characteristic of these foundation models is their ability to perform zero-shot learning, that is, forecasting a new system from limited context data without explicit re-training or fine-tuning. Here, we evaluate whether the zero-shot learning paradigm extends to the challenging task of forecasting chaotic systems. Across 135 distinct chaotic dynamical systems and $10^8$ timepoints, we find that foundation models produce competitive forecasts compared to custom-trained models (including NBEATS, TiDE, etc.), particularly when training data is limited. Interestingly, even after point forecasts fail, large foundation models are able to preserve the geometric and statistical properties of the chaotic attractors. We attribute this success to foundation models' ability to perform in-context learning and identify context parroting as a simple mechanism used by these models to capture the long-term behavior of chaotic dynamical systems. Our results highlight the potential of foundation models as a tool for probing nonlinear and complex systems.
Related papers
- Tailored Forecasting from Short Time Series via Meta-learning [0.0]
We introduce Meta-learning for Tailored Forecasting from Related Time Series (METAFORS)
By leveraging a library of models trained on related systems, METAFORS builds tailored models to forecast system evolution with limited data.
We demonstrate METAFORS' ability to predict both short-term dynamics and long-term statistics, even when test and related systems exhibit significantly different behaviors.
arXiv Detail & Related papers (2025-01-27T18:58:04Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - Implicit Reasoning in Deep Time Series Forecasting [16.750280337155647]
This work takes an initial step toward assessing the reasoning abilities of deep time series forecasting models.
We find that certain linear, patch-based Transformer models generalize effectively in systematically orchestrated out-of-distribution scenarios.
arXiv Detail & Related papers (2024-09-17T02:11:19Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Domain-aware Control-oriented Neural Models for Autonomous Underwater
Vehicles [2.4779082385578337]
We present control-oriented parametric models with varying levels of domain-awareness.
We employ universal differential equations to construct data-driven blackbox and graybox representations of the AUV dynamics.
arXiv Detail & Related papers (2022-08-15T17:01:14Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Randomized Neural Networks for Forecasting Time Series with Multiple
Seasonality [0.0]
This work contributes to the development of neural forecasting models with novel randomization-based learning methods.
A pattern-based representation of time series makes the proposed approach useful for forecasting time series with multiple seasonality.
arXiv Detail & Related papers (2021-07-04T18:39:27Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
We present Model-Attentive Ensemble learning for Sequence modeling (MAES)
MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions.
We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.
arXiv Detail & Related papers (2021-02-23T05:23:35Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.