Tailored Forecasting from Short Time Series via Meta-learning
- URL: http://arxiv.org/abs/2501.16325v1
- Date: Mon, 27 Jan 2025 18:58:04 GMT
- Title: Tailored Forecasting from Short Time Series via Meta-learning
- Authors: Declan A. Norton, Edward Ott, Andrew Pomerance, Brian Hunt, Michelle Girvan,
- Abstract summary: We introduce Meta-learning for Tailored Forecasting from Related Time Series (METAFORS)
By leveraging a library of models trained on related systems, METAFORS builds tailored models to forecast system evolution with limited data.
We demonstrate METAFORS' ability to predict both short-term dynamics and long-term statistics, even when test and related systems exhibit significantly different behaviors.
- Score: 0.0
- License:
- Abstract: Machine learning (ML) models can be effective for forecasting the dynamics of unknown systems from time-series data, but they often require large amounts of data and struggle to generalize across systems with varying dynamics. Combined, these issues make forecasting from short time series particularly challenging. To address this problem, we introduce Meta-learning for Tailored Forecasting from Related Time Series (METAFORS), which uses related systems with longer time-series data to supplement limited data from the system of interest. By leveraging a library of models trained on related systems, METAFORS builds tailored models to forecast system evolution with limited data. Using a reservoir computing implementation and testing on simulated chaotic systems, we demonstrate METAFORS' ability to predict both short-term dynamics and long-term statistics, even when test and related systems exhibit significantly different behaviors and the available data are scarce, highlighting its robustness and versatility in data-limited scenarios.
Related papers
- Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings [0.0]
patio-temporal forecasting is crucial in transportation, logistics, and supply chain management.
We propose a dynamic, multi-modal approach that integrates the strengths of traditional forecasting methods and instruction tuning of small language models.
Our framework enables on-premises customization with reduced computational and memory demands, while maintaining inference speed and data privacy/security.
arXiv Detail & Related papers (2024-08-24T16:32:58Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which generalizes weather forecasts to finer-grained temporal scales beyond training dataset.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We also introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data.
Our method relies on a continuous-time-dependent model of the series' evolution dynamics.
A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows.
arXiv Detail & Related papers (2023-06-09T13:20:04Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
We present a data-driven approach to automatically extract an appropriate model structure from experimentally observed processes.
We demonstrate our approach on a simple benchmark problem, where it beats the state of the art meta-learning techniques.
arXiv Detail & Related papers (2021-10-07T18:23:14Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Combining Machine Learning with Knowledge-Based Modeling for Scalable
Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal
Systems [48.7576911714538]
We attempt to utilize machine learning as the essential tool for integrating pasttemporal data into predictions.
We propose combining two approaches: (i) a parallel machine learning prediction scheme; and (ii) a hybrid technique, for a composite prediction system composed of a knowledge-based component and a machine-learning-based component.
We demonstrate that not only can this method combining (i) and (ii) be scaled to give excellent performance for very large systems, but also that the length of time series data needed to train our multiple, parallel machine learning components is dramatically less than that necessary without parallelization.
arXiv Detail & Related papers (2020-02-10T23:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.