SwiftDossier: Tailored Automatic Dossier for Drug Discovery with LLMs and Agents
- URL: http://arxiv.org/abs/2409.15817v1
- Date: Tue, 24 Sep 2024 07:29:05 GMT
- Title: SwiftDossier: Tailored Automatic Dossier for Drug Discovery with LLMs and Agents
- Authors: Gabriele Fossi, Youssef Boulaimen, Leila Outemzabet, Nathalie Jeanray, Stephane Gerart, Sebastien Vachenc, Joanna Giemza, Salvatore Raieli,
- Abstract summary: We show how an advanced RAG system can help the Large Language Models (LLMs) to generate more accurate answers to drug-discovery-related questions.
Secondly, we show how to create an automatic target dossier using LLMs and incorporating them with external tools that they can use to gather data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The advancement of artificial intelligence algorithms has expanded their application to several fields such as the biomedical domain. Artificial intelligence systems, including Large Language Models (LLMs), can be particularly advantageous in drug discovery, which is a very long and expensive process. However, LLMs by themselves lack in-depth knowledge about specific domains and can generate factually incorrect information. Moreover, they are not able to perform more complex actions that imply the usage of external tools. Our work is focused on these two issues. Firstly, we show how the implementation of an advanced RAG system can help the LLM to generate more accurate answers to drug-discovery-related questions. The results show that the answers generated by the LLM with the RAG system surpass in quality the answers produced by the model without RAG. Secondly, we show how to create an automatic target dossier using LLMs and incorporating them with external tools that they can use to execute more intricate tasks to gather data such as accessing databases and executing code. The result is a production-ready target dossier containing the acquired information summarized into a PDF and a PowerPoint presentation.
Related papers
- mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - Relational Database Augmented Large Language Model [59.38841050766026]
Large language models (LLMs) excel in many natural language processing (NLP) tasks.
They can only incorporate new knowledge through training or supervised fine-tuning processes.
This precise, up-to-date, and private information is typically stored in relational databases.
arXiv Detail & Related papers (2024-07-21T06:19:10Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - LLM-Enhanced Data Management [17.382233123729755]
Large language models (LLMs) have shown high generalizability and human-competitive abilities in understanding context.
LLMs have several limitations: hallucination, high cost, and low accuracy for complicated tasks.
We design LLMDB, an LLM-enhanced data management paradigm which has generalizability and high inference ability while avoiding hallucination.
arXiv Detail & Related papers (2024-02-04T23:42:02Z) - SEED: Domain-Specific Data Curation With Large Language Models [22.54280367957015]
We present SEED, an LLM-as-compiler approach that automatically generates domain-specific data curation solutions via Large Language Models (LLMs)
SEED features an that automatically selects from the four LLM-assisted modules and forms a hybrid execution pipeline that best fits the task at hand.
arXiv Detail & Related papers (2023-10-01T17:59:20Z) - Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs [19.0797968186656]
Large language models (LLMs) are versatile and can solve different tasks due to their emergent ability and generalizability.
In some previous works, additional modules like graph neural networks (GNNs) are trained on retrieved knowledge from external knowledge bases.
arXiv Detail & Related papers (2023-09-06T15:55:01Z) - ToolQA: A Dataset for LLM Question Answering with External Tools [14.408707186450899]
Large Language Models (LLMs) have demonstrated impressive performance in various NLP tasks.
They still suffer from challenges such as hallucination and weak numerical reasoning.
To overcome these challenges, external tools can be used to enhance LLMs' question-answering abilities.
arXiv Detail & Related papers (2023-06-23T05:43:28Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.