Twin Network Augmentation: A Novel Training Strategy for Improved Spiking Neural Networks and Efficient Weight Quantization
- URL: http://arxiv.org/abs/2409.15849v1
- Date: Tue, 24 Sep 2024 08:20:56 GMT
- Title: Twin Network Augmentation: A Novel Training Strategy for Improved Spiking Neural Networks and Efficient Weight Quantization
- Authors: Lucas Deckers, Benjamin Vandersmissen, Ing Jyh Tsang, Werner Van Leekwijck, Steven Latré,
- Abstract summary: Spiking Neural Networks (SNNs) operate using sparse, event-driven spikes to communicate information between neurons.
An alternative technique for reducing a neural network's footprint is quantization.
We present Twin Network Augmentation (TNA), a novel training framework aimed at improving the performance of SNNs.
- Score: 1.2513527311793347
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of Artificial Neural Networks (ANNs) has led to increased energy consumption, raising concerns about their sustainability. Spiking Neural Networks (SNNs), which are inspired by biological neural systems and operate using sparse, event-driven spikes to communicate information between neurons, offer a potential solution due to their lower energy requirements. An alternative technique for reducing a neural network's footprint is quantization, which compresses weight representations to decrease memory usage and energy consumption. In this study, we present Twin Network Augmentation (TNA), a novel training framework aimed at improving the performance of SNNs while also facilitating an enhanced compression through low-precision quantization of weights. TNA involves co-training an SNN with a twin network, optimizing both networks to minimize their cross-entropy losses and the mean squared error between their output logits. We demonstrate that TNA significantly enhances classification performance across various vision datasets and in addition is particularly effective when applied when reducing SNNs to ternary weight precision. Notably, during inference , only the ternary SNN is retained, significantly reducing the network in number of neurons, connectivity and weight size representation. Our results show that TNA outperforms traditional knowledge distillation methods and achieves state-of-the-art performance for the evaluated network architecture on benchmark datasets, including CIFAR-10, CIFAR-100, and CIFAR-10-DVS. This paper underscores the effectiveness of TNA in bridging the performance gap between SNNs and ANNs and suggests further exploration into the application of TNA in different network architectures and datasets.
Related papers
- On Reducing Activity with Distillation and Regularization for Energy Efficient Spiking Neural Networks [0.19999259391104385]
Interest in spiking neural networks (SNNs) has been growing steadily, promising an energy-efficient alternative to formal neural networks (FNNs)
We propose to leverage Knowledge Distillation (KD) for SNNs training with surrogate gradient descent in order to optimize the trade-off between performance and spiking activity.
arXiv Detail & Related papers (2024-06-26T13:51:57Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training [0.8602553195689513]
Spiking neural networks (SNNs) have gained attention as a promising alternative to traditional artificial neural networks (ANNs)
In this paper, we study the impact of skip connections on SNNs and propose a hyper parameter optimization technique that adapts models from ANN to SNN.
We demonstrate that optimizing the position, type, and number of skip connections can significantly improve the accuracy and efficiency of SNNs.
arXiv Detail & Related papers (2023-03-23T07:57:32Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Pruning of Deep Spiking Neural Networks through Gradient Rewiring [41.64961999525415]
Spiking Neural Networks (SNNs) have been attached great importance due to their biological plausibility and high energy-efficiency on neuromorphic chips.
Most existing methods directly apply pruning approaches in artificial neural networks (ANNs) to SNNs, which ignore the difference between ANNs and SNNs.
We propose gradient rewiring (Grad R), a joint learning algorithm of connectivity and weight for SNNs, that enables us to seamlessly optimize network structure without retrain.
arXiv Detail & Related papers (2021-05-11T10:05:53Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z) - Distilling Spikes: Knowledge Distillation in Spiking Neural Networks [22.331135708302586]
Spiking Neural Networks (SNNs) are energy-efficient computing architectures that exchange spikes for processing information.
We propose techniques for knowledge distillation in spiking neural networks for the task of image classification.
Our approach is expected to open up new avenues for deploying high performing large SNN models on resource-constrained hardware platforms.
arXiv Detail & Related papers (2020-05-01T09:36:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.