論文の概要: Beats of Bias: Analyzing Lyrics with Topic Modeling and Gender Bias Measurements
- arxiv url: http://arxiv.org/abs/2409.15949v1
- Date: Tue, 24 Sep 2024 10:24:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 07:51:56.996483
- Title: Beats of Bias: Analyzing Lyrics with Topic Modeling and Gender Bias Measurements
- Title(参考訳): Beats of Bias: トピックモデリングとジェンダーバイアス測定による歌詞の分析
- Authors: Danqing Chen, Adithi Satish, Rasul Khanbayov, Carolin M. Schuster, Georg Groh,
- Abstract要約: 本稿では,英語の歌詞におけるジェンダーバイアスの分析と判断に,トピックモデリングとバイアス計測技術を用いる。
我々は多種多様な話題,特に最大集団において,多量の挑発的・偽義的な歌詞を観察した。
インテリジェンスと強さに関連する単語は、外見や弱さよりも、ジャンルにまたがる男性バイアスを示す傾向にあり、それは女性バイアスの強い単語である。
- 参考スコア(独自算出の注目度): 1.5379084885764847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper uses topic modeling and bias measurement techniques to analyze and determine gender bias in English song lyrics. We utilize BERTopic to cluster 537,553 English songs into distinct topics and chart their development over time. Our analysis shows the thematic shift in song lyrics over the years, from themes of romance to the increasing sexualization of women in songs. We observe large amounts of profanity and misogynistic lyrics on various topics, especially in the overall biggest cluster. Furthermore, to analyze gender bias across topics and genres, we employ the Single Category Word Embedding Association Test (SC-WEAT) to compute bias scores for the word embeddings trained on the most popular topics as well as for each genre. We find that words related to intelligence and strength tend to show a male bias across genres, as opposed to appearance and weakness words, which are more female-biased; however, a closer look also reveals differences in biases across topics.
- Abstract(参考訳): 本稿では,英語の歌詞におけるジェンダーバイアスの分析と判断に,トピックモデリングとバイアス計測技術を用いる。
BERTopicを使って、537,553の英語の曲を異なるトピックに分類し、時間とともにその展開をチャート化する。
歌声のテーマから歌声における女性の性化の増大まで,歌の歌詞の主題的変化について分析した。
様々な話題,特に大集団において,多量の誇張と偽りの歌詞を観察した。
さらに、トピックやジャンルの性別バイアスを分析するために、最も人気のあるトピックやジャンルで訓練された単語埋め込みに対するバイアススコアを計算するために、SC-WEAT(Single Category Word Embedding Association Test)を用いている。
インテリジェンスや強みに関連する単語は、外見や弱さよりもジャンルによって男性的偏見を示す傾向があり、女性的偏見が強くなるが、より近視的な見方はトピック間での偏見の違いも示している。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - ''Fifty Shades of Bias'': Normative Ratings of Gender Bias in GPT
Generated English Text [11.085070600065801]
言語は、社会的信念システムの顕在化のための強力なツールとして機能する。
ジェンダーバイアスは、私たちの社会でもっとも普及しているバイアスの1つです。
我々は、GPT生成した英語テキストの最初のデータセットを作成し、男女バイアスの規範的評価を行う。
論文 参考訳(メタデータ) (2023-10-26T14:34:06Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
近年の研究では、伝統的な妖精は有害な性バイアスを伴っていることが示されている。
本研究は,ジェンダーの摂動に対する頑健さを評価することによって,言語モデルの学習バイアスを評価することを目的とする。
論文 参考訳(メタデータ) (2023-10-16T22:25:09Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Are Fairy Tales Fair? Analyzing Gender Bias in Temporal Narrative Event
Chains of Children's Fairy Tales [46.65377334112404]
社会的バイアスやステレオタイプは、私たちの物語における彼らの存在を通じて、私たちの文化に埋め込まれています。
そこで本稿では,各キャラクタに対して,物語の時間的動詞に基づくイベントチェーンを自動的に抽出する計算パイプラインを提案する。
また、従来のステレオタイプと整合するカテゴリを含むことで、バイアス分析を容易にする動詞ベースのイベントアノテーションスキームを提案する。
論文 参考訳(メタデータ) (2023-05-26T05:29:37Z) - Large scale analysis of gender bias and sexism in song lyrics [3.437656066916039]
我々は,手動で注釈付けされたポピュラーソングの小さなサンプルを用いて,以前の研究よりも大規模な性差別的な歌詞を同定した。
性差別的なコンテンツは、特に男性アーティストやBillboardチャートに掲載されている人気曲から、時間とともに増えていくだろう。
これは、このタイプの最初の大規模分析であり、大衆文化のそのような影響力のある部分における言語使用に関する洞察を与えている。
論文 参考訳(メタデータ) (2022-08-03T13:18:42Z) - Gender Bias in Word Embeddings: A Comprehensive Analysis of Frequency,
Syntax, and Semantics [3.4048739113355215]
インターネットコーパスで学習した英語の静的単語埋め込みにおいて,グループベースのバイアスを包括的に分析する。
単一カテゴリー単語埋め込みアソシエーションテストを用いて,性別バイアスの広範性を示す。
語彙の中で最も頻繁な単語1,000のうち、77%が女性よりも男性に関連があることがわかりました。
論文 参考訳(メタデータ) (2022-06-07T15:35:10Z) - Quantifying Gender Bias in Consumer Culture [0.0]
歌の歌詞は、女性に対する社会的なステレオタイプの変化を促進するのに役立つかもしれない。
50年以上にわたる100万曲の自然言語処理は、誤用を定量化している。
女性は望ましい特性(すなわち能力)に結びつく傾向が低く、このバイアスは減少するが、それは持続する。
論文 参考訳(メタデータ) (2022-01-10T05:44:54Z) - Gender bias in magazines oriented to men and women: a computational
approach [58.720142291102135]
女性指向の雑誌の内容と男性指向の雑誌の内容を比較する。
トピック・モデリングの手法により、雑誌で議論されている主要なテーマを特定し、これらのトピックの存在が時間とともに雑誌間でどの程度異なるかを定量化する。
以上の結果から,セクシュアオブジェクトとしての家族,ビジネス,女性の出現頻度は,時間とともに消失する傾向にあることが示唆された。
論文 参考訳(メタデータ) (2020-11-24T14:02:49Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。