Artificial Human Intelligence: The role of Humans in the Development of Next Generation AI
- URL: http://arxiv.org/abs/2409.16001v1
- Date: Tue, 24 Sep 2024 12:02:20 GMT
- Title: Artificial Human Intelligence: The role of Humans in the Development of Next Generation AI
- Authors: Suayb S. Arslan,
- Abstract summary: We explore the interplay between human and machine intelligence, focusing on the crucial role humans play in developing ethical, responsible, and robust intelligent systems.
We propose future perspectives, capitalizing on the advantages of symbiotic designs to suggest a human-centered direction for next-generation AI development.
- Score: 6.8894258727040665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human intelligence, the most evident and accessible form of source of reasoning, hosted by biological hardware, has evolved and been refined over thousands of years, positioning itself today to create new artificial forms and preparing to self--design their evolutionary path forward. Beginning with the advent of foundation models, the rate at which human and artificial intelligence interact with each other has surpassed any anticipated quantitative figures. The close engagement led to both bits of intelligence to be impacted in various ways, which naturally resulted in complex confluences that warrant close scrutiny. In the sequel, we shall explore the interplay between human and machine intelligence, focusing on the crucial role humans play in developing ethical, responsible, and robust intelligent systems. We slightly delve into interesting aspects of implementation inspired by the mechanisms underlying neuroscience and human cognition. Additionally, we propose future perspectives, capitalizing on the advantages of symbiotic designs to suggest a human-centered direction for next-generation AI development. We finalize this evolving document with a few thoughts and open questions yet to be addressed by the broader community.
Related papers
- Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence [0.0]
The pursuit of creating artificial intelligence mirrors our longstanding fascination with understanding our own intelligence.
Recent advances in AI hold promise, but singular approaches often fall short in capturing the essence of intelligence.
This paper explores how fundamental principles from biological computation can guide the design of truly intelligent systems.
arXiv Detail & Related papers (2024-11-22T02:55:39Z) - The Interplay of Learning, Analytics, and Artificial Intelligence in Education: A Vision for Hybrid Intelligence [0.45207442500313766]
I challenge the prevalent narrow conceptualisation of AI as tools, and argue for the importance of alternative conceptualisations of AI.
I highlight the differences between human intelligence and artificial information processing, and posit that AI can also serve as an instrument for understanding human learning.
The paper presents three unique conceptualisations of AI: the externalization of human cognition, the internalization of AI models to influence human mental models, and the extension of human cognition via tightly coupled human-AI hybrid intelligence systems.
arXiv Detail & Related papers (2024-03-24T10:07:46Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
The intersection of Artificial Intelligence (AI) and neuroscience in Explainable AI (XAI) is pivotal for enhancing transparency and interpretability in complex decision-making processes.
This paper explores the evolution of XAI methodologies, ranging from feature-based to human-centric approaches.
The challenges in achieving explainability in generative models, ensuring responsible AI practices, and addressing ethical implications are discussed.
arXiv Detail & Related papers (2024-02-07T14:09:11Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Natural Selection Favors AIs over Humans [18.750116414606698]
We argue that the most successful AI agents will likely have undesirable traits.
If such agents have intelligence that exceeds that of humans, this could lead to humanity losing control of its future.
To counteract these risks and evolutionary forces, we consider interventions such as carefully designing AI agents' intrinsic motivations.
arXiv Detail & Related papers (2023-03-28T17:59:12Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Intelligent behavior depends on the ecological niche: Scaling up AI to
human-like intelligence in socio-cultural environments [17.238068736229017]
This paper outlines a perspective on the future of AI, discussing directions for machines models of human-like intelligence.
We emphasize the role of ecological niches in sculpting intelligent behavior, and in particular that human intelligence was fundamentally shaped to adapt to a constantly changing socio-cultural environment.
arXiv Detail & Related papers (2021-03-11T16:24:00Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.