Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence
- URL: http://arxiv.org/abs/2411.15243v1
- Date: Fri, 22 Nov 2024 02:55:39 GMT
- Title: Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence
- Authors: Nima Dehghani, Michael Levin,
- Abstract summary: The pursuit of creating artificial intelligence mirrors our longstanding fascination with understanding our own intelligence.
Recent advances in AI hold promise, but singular approaches often fall short in capturing the essence of intelligence.
This paper explores how fundamental principles from biological computation can guide the design of truly intelligent systems.
- Score: 0.0
- License:
- Abstract: The pursuit of creating artificial intelligence (AI) mirrors our longstanding fascination with understanding our own intelligence. From the myths of Talos to Aristotelian logic and Heron's inventions, we have sought to replicate the marvels of the mind. While recent advances in AI hold promise, singular approaches often fall short in capturing the essence of intelligence. This paper explores how fundamental principles from biological computation--particularly context-dependent, hierarchical information processing, trial-and-error heuristics, and multi-scale organization--can guide the design of truly intelligent systems. By examining the nuanced mechanisms of biological intelligence, such as top-down causality and adaptive interaction with the environment, we aim to illuminate potential limitations in artificial constructs. Our goal is to provide a framework inspired by biological systems for designing more adaptable and robust artificial intelligent systems.
Related papers
- Artificial Intelligence without Restriction Surpassing Human Intelligence with Probability One: Theoretical Insight into Secrets of the Brain with AI Twins of the Brain [20.956507640605093]
One fundamental question which would affect human sustainability remains open: Will artificial intelligence (AI) evolve to surpass human intelligence in the future?
This paper shows that in theory new AI twins with fresh cellular level of AI techniques for neuroscience could approximate the brain and its functioning systems.
This paper indirectly proves the validity of the conjecture made by Frank Rosenblatt 70 years ago about the potential capabilities of AI.
arXiv Detail & Related papers (2024-12-04T13:17:44Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - The Trap of Presumed Equivalence: Artificial General Intelligence Should Not Be Assessed on the Scale of Human Intelligence [0.0]
A traditional approach to assessing emerging intelligence in the theory of intelligent systems is based on the similarity, "imitation" of human-like actions and behaviors.
We argue that under some natural assumptions, developing intelligent systems will be able to form their own intents and objectives.
arXiv Detail & Related papers (2024-10-14T13:39:58Z) - Artificial Human Intelligence: The role of Humans in the Development of Next Generation AI [6.8894258727040665]
We explore the interplay between human and machine intelligence, focusing on the crucial role humans play in developing intelligent systems.
We propose future perspectives, capitalizing on the advantages of symbiotic designs to suggest a human-centered direction for next-generation developments.
arXiv Detail & Related papers (2024-09-24T12:02:20Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Suffering Toasters -- A New Self-Awareness Test for AI [0.0]
We argue that all current intelligence tests are insufficient to point to the existence or lack of intelligence.
We propose a new approach to test for artificial self-awareness and outline a possible implementation.
arXiv Detail & Related papers (2023-06-29T18:58:01Z) - When Brain-inspired AI Meets AGI [40.96159978312796]
We provide a comprehensive overview of brain-inspired AI from the perspective of Artificial General Intelligence.
We begin with the current progress in brain-inspired AI and its extensive connection with AGI.
We then cover the important characteristics for both human intelligence and AGI.
arXiv Detail & Related papers (2023-03-28T12:46:38Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.