Unlocking Markets: A Multilingual Benchmark to Cross-Market Question Answering
- URL: http://arxiv.org/abs/2409.16025v1
- Date: Tue, 24 Sep 2024 12:24:34 GMT
- Title: Unlocking Markets: A Multilingual Benchmark to Cross-Market Question Answering
- Authors: Yifei Yuan, Yang Deng, Anders Søgaard, Mohammad Aliannejadi,
- Abstract summary: Product-related question answering (PQA) entails utilizing product-related resources to provide precise responses to users.
We propose a novel task of Multilingual Cross-market Product-based Question Answering (MCPQA)
We introduce a large-scale dataset comprising over 7 million questions from 17 marketplaces across 11 languages.
- Score: 49.68194318431166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Users post numerous product-related questions on e-commerce platforms, affecting their purchase decisions. Product-related question answering (PQA) entails utilizing product-related resources to provide precise responses to users. We propose a novel task of Multilingual Cross-market Product-based Question Answering (MCPQA) and define the task as providing answers to product-related questions in a main marketplace by utilizing information from another resource-rich auxiliary marketplace in a multilingual context. We introduce a large-scale dataset comprising over 7 million questions from 17 marketplaces across 11 languages. We then perform automatic translation on the Electronics category of our dataset, naming it as McMarket. We focus on two subtasks: review-based answer generation and product-related question ranking. For each subtask, we label a subset of McMarket using an LLM and further evaluate the quality of the annotations via human assessment. We then conduct experiments to benchmark our dataset, using models ranging from traditional lexical models to LLMs in both single-market and cross-market scenarios across McMarket and the corresponding LLM subset. Results show that incorporating cross-market information significantly enhances performance in both tasks.
Related papers
- INDIC QA BENCHMARK: A Multilingual Benchmark to Evaluate Question Answering capability of LLMs for Indic Languages [26.13077589552484]
Indic-QA is the largest publicly available context-grounded question-answering dataset for 11 major Indian languages from two language families.
We generate a synthetic dataset using the Gemini model to create question-answer pairs given a passage, which is then manually verified for quality assurance.
We evaluate various multilingual Large Language Models and their instruction-fine-tuned variants on the benchmark and observe that their performance is subpar, particularly for low-resource languages.
arXiv Detail & Related papers (2024-07-18T13:57:16Z) - Large Language Models for Relevance Judgment in Product Search [48.56992980315751]
High relevance of retrieved and re-ranked items to the search query is the cornerstone of successful product search.
We present an array of techniques for leveraging Large Language Models (LLMs) for automating the relevance judgment of query-item pairs (QIPs) at scale.
Our findings have immediate implications for the growing field of relevance judgment automation in product search.
arXiv Detail & Related papers (2024-06-01T00:52:41Z) - Can a Multichoice Dataset be Repurposed for Extractive Question Answering? [52.28197971066953]
We repurposed the Belebele dataset (Bandarkar et al., 2023), which was designed for multiple-choice question answering (MCQA)
We present annotation guidelines and a parallel EQA dataset for English and Modern Standard Arabic (MSA).
Our aim is to enable others to adapt our approach for the 120+ other language variants in Belebele, many of which are deemed under-resourced.
arXiv Detail & Related papers (2024-04-26T11:46:05Z) - Let LLMs Take on the Latest Challenges! A Chinese Dynamic Question
Answering Benchmark [69.3415799675046]
We introduce CDQA, a Chinese Dynamic QA benchmark containing question-answer pairs related to the latest news on the Chinese Internet.
We obtain high-quality data through a pipeline that combines humans and models.
We have also evaluated and analyzed mainstream and advanced Chinese LLMs on CDQA.
arXiv Detail & Related papers (2024-02-29T15:22:13Z) - xPQA: Cross-Lingual Product Question Answering across 12 Languages [26.691856403891105]
Product Question Answering (PQA) systems are key in e-commerce applications to provide responses to customers' questions.
xPQA is a large-scale annotated cross-lingual PQA dataset in 12 languages across 9 branches.
We present results in (1) candidate ranking, to select the best English candidate to answer a non-English question; and (2) answer generation, to generate a natural-sounding non-English answer based on the selected English candidate.
arXiv Detail & Related papers (2023-05-16T07:56:19Z) - Self-Teaching Machines to Read and Comprehend with Large-Scale
Multi-Subject Question Answering Data [58.36305373100518]
It is unclear whether subject-area question-answering data is useful for machine reading comprehension tasks.
We collect a large-scale multi-subject multiple-choice question-answering dataset, ExamQA.
We use incomplete and noisy snippets returned by a web search engine as the relevant context for each question-answering instance to convert it into a weakly-labeled MRC instance.
arXiv Detail & Related papers (2021-02-01T23:18:58Z) - Cross-Lingual Low-Resource Set-to-Description Retrieval for Global
E-Commerce [83.72476966339103]
Cross-lingual information retrieval is a new task in cross-border e-commerce.
We propose a novel cross-lingual matching network (CLMN) with the enhancement of context-dependent cross-lingual mapping.
Experimental results indicate that our proposed CLMN yields impressive results on the challenging task.
arXiv Detail & Related papers (2020-05-17T08:10:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.