Deep chroma compression of tone-mapped images
- URL: http://arxiv.org/abs/2409.16032v1
- Date: Tue, 24 Sep 2024 12:31:55 GMT
- Title: Deep chroma compression of tone-mapped images
- Authors: Xenios Milidonis, Francesco Banterle, Alessandro Artusi,
- Abstract summary: We propose a generative adversarial network for fast and reliable chroma compression of HDR tone-mapped images.
We show that the proposed model outperforms state-of-the-art image generation and enhancement networks in color accuracy.
The model achieves real-time performance, showing promising results for deployment on devices with limited computational resources.
- Score: 46.07829363710451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acquisition of high dynamic range (HDR) images is thriving due to the increasing use of smart devices and the demand for high-quality output. Extensive research has focused on developing methods for reducing the luminance range in HDR images using conventional and deep learning-based tone mapping operators to enable accurate reproduction on conventional 8 and 10-bit digital displays. However, these methods often fail to account for pixels that may lie outside the target display's gamut, resulting in visible chromatic distortions or color clipping artifacts. Previous studies suggested that a gamut management step ensures that all pixels remain within the target gamut. However, such approaches are computationally expensive and cannot be deployed on devices with limited computational resources. We propose a generative adversarial network for fast and reliable chroma compression of HDR tone-mapped images. We design a loss function that considers the hue property of generated images to improve color accuracy, and train the model on an extensive image dataset. Quantitative experiments demonstrate that the proposed model outperforms state-of-the-art image generation and enhancement networks in color accuracy, while a subjective study suggests that the generated images are on par or superior to those produced by conventional chroma compression methods in terms of visual quality. Additionally, the model achieves real-time performance, showing promising results for deployment on devices with limited computational resources.
Related papers
- Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Image Deblurring using GAN [0.0]
This project focuses on the application of Generative Adversarial Network (GAN) in image deblurring.
The project defines a GAN model inflow and trains it with GoPRO dataset.
The network can obtain sharper pixels in image, achieving an average of 29.3 Peak Signal-to-Noise Ratio (PSNR) and 0.72 Structural Similarity Assessment (SSIM)
arXiv Detail & Related papers (2023-12-15T02:43:30Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
Raw images have distinct advantages over sRGB images, e.g., linearity and fine-grained quantization levels.
They are not widely adopted by general users due to their substantial storage requirements.
We propose a novel framework that learns a compact representation in the latent space, serving as metadata.
arXiv Detail & Related papers (2023-06-21T06:59:07Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
This paper introduces the first approach to reconstruct high-resolution, high-dynamic range color images from raw photographic bursts captured by a handheld camera with exposure bracketing.
The proposed algorithm is fast, with low memory requirements compared to state-of-the-art learning-based approaches to image restoration.
Experiments demonstrate its excellent performance with super-resolution factors of up to $times 4$ on real photographs taken in the wild with hand-held cameras.
arXiv Detail & Related papers (2022-07-29T13:31:28Z) - Enhanced Hyperspectral Image Super-Resolution via RGB Fusion and TV-TV
Minimization [9.584717030078245]
Hyperspectral (HS) images contain detailed spectral information that has proven crucial in applications like remote sensing, surveillance, and astronomy.
Because of hardware limitations of HS cameras, the captured images have low spatial resolution.
To improve them, the low-resolution hyperspectral images are fused with conventional high-resolution RGB images via a technique known as fusion based HS image super-resolution.
arXiv Detail & Related papers (2021-06-13T18:52:47Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
Lossy image compression is pervasively conducted to save communication bandwidth, resulting in undesirable compression artifacts.
We propose a resource-efficient blind quality enhancement (RBQE) approach for compressed images.
Our approach can automatically decide to terminate or continue enhancement according to the assessed quality of enhanced images.
arXiv Detail & Related papers (2020-06-30T07:38:47Z) - Burst Photography for Learning to Enhance Extremely Dark Images [19.85860245798819]
In this paper, we aim to leverage burst photography to boost the performance and obtain much sharper and more accurate RGB images from extremely dark raw images.
The backbone of our proposed framework is a novel coarse-to-fine network architecture that generates high-quality outputs progressively.
Our experiments demonstrate that our approach leads to perceptually more pleasing results than the state-of-the-art methods by producing more detailed and considerably higher quality images.
arXiv Detail & Related papers (2020-06-17T13:19:07Z) - Deep Attentive Generative Adversarial Network for Photo-Realistic Image
De-Quantization [25.805568996596783]
De-quantization can improve the visual quality of low bit-depth image to display on high bit-depth screen.
This paper proposes DAGAN algorithm to perform super-resolution on image intensity resolution.
DenseResAtt module consists of dense residual blocks armed with self-attention mechanism.
arXiv Detail & Related papers (2020-04-07T06:45:01Z) - Burst Denoising of Dark Images [19.85860245798819]
We propose a deep learning framework for obtaining clean and colorful RGB images from extremely dark raw images.
The backbone of our framework is a novel coarse-to-fine network architecture that generates high-quality outputs in a progressive manner.
Our experiments demonstrate that the proposed approach leads to perceptually more pleasing results than state-of-the-art methods.
arXiv Detail & Related papers (2020-03-17T17:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.