Benchmarking Robustness of Endoscopic Depth Estimation with Synthetically Corrupted Data
- URL: http://arxiv.org/abs/2409.16063v1
- Date: Tue, 24 Sep 2024 13:04:54 GMT
- Title: Benchmarking Robustness of Endoscopic Depth Estimation with Synthetically Corrupted Data
- Authors: An Wang, Haochen Yin, Beilei Cui, Mengya Xu, Hongliang Ren,
- Abstract summary: We present a benchmark for assessing the robustness of endoscopic depth estimation models.
We introduce the Depth Estimation Robustness Score (DERS), a novel metric that combines measures of error, accuracy, and robustness.
A thorough analysis of two monocular depth estimation models using our framework reveals crucial information about their reliability under adverse conditions.
- Score: 6.963196918624006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate depth perception is crucial for patient outcomes in endoscopic surgery, yet it is compromised by image distortions common in surgical settings. To tackle this issue, our study presents a benchmark for assessing the robustness of endoscopic depth estimation models. We have compiled a comprehensive dataset that reflects real-world conditions, incorporating a range of synthetically induced corruptions at varying severity levels. To further this effort, we introduce the Depth Estimation Robustness Score (DERS), a novel metric that combines measures of error, accuracy, and robustness to meet the multifaceted requirements of surgical applications. This metric acts as a foundational element for evaluating performance, establishing a new paradigm for the comparative analysis of depth estimation technologies. Additionally, we set forth a benchmark focused on robustness for the evaluation of depth estimation in endoscopic surgery, with the aim of driving progress in model refinement. A thorough analysis of two monocular depth estimation models using our framework reveals crucial information about their reliability under adverse conditions. Our results emphasize the essential need for algorithms that can tolerate data corruption, thereby advancing discussions on improving model robustness. The impact of this research transcends theoretical frameworks, providing concrete gains in surgical precision and patient safety. This study establishes a benchmark for the robustness of depth estimation and serves as a foundation for developing more resilient surgical support technologies. Code is available at https://github.com/lofrienger/EndoDepthBenchmark.
Related papers
- Self-supervised Monocular Depth and Pose Estimation for Endoscopy with Generative Latent Priors [10.61978045582697]
3D mapping in endoscopy enables quantitative, holistic lesion characterization within the gastrointestinal (GI) tract.
Existing methods relying on synthetic datasets or complex models often lack generalizability in challenging endoscopic conditions.
We propose a robust self-supervised monocular depth and pose estimation framework that incorporates a Generative Latent Bank and a Variational Autoencoder.
arXiv Detail & Related papers (2024-11-26T15:43:06Z) - EndoDepth: A Benchmark for Assessing Robustness in Endoscopic Depth Prediction [1.7243216387069678]
We present the EndoDepth benchmark, an evaluation framework designed to assess the robustness of monocular depth prediction models in endoscopic scenarios.
We present an evaluation approach that is consistent and specifically designed to evaluate the robustness performance of the model in endoscopic scenarios.
arXiv Detail & Related papers (2024-09-30T04:18:14Z) - Advancing Depth Anything Model for Unsupervised Monocular Depth Estimation in Endoscopy [3.1186464715409983]
We introduce a novel fine-tuning strategy for the Depth Anything Model.
We integrate it with an intrinsic-based unsupervised monocular depth estimation framework.
Our results on the SCARED dataset show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-09-12T03:04:43Z) - How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation [6.547981908229007]
We show how architectural and framework biases combine to influence model performance.
Experiments show imputation performance variations of up to 20% based on preprocessing and implementation choices.
We identify critical gaps between current deep imputation methods and medical requirements.
arXiv Detail & Related papers (2024-07-11T12:33:28Z) - The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation [97.63185634482552]
We summarize the winning solutions from the RoboDepth Challenge.
The challenge was designed to facilitate and advance robust OoD depth estimation.
We hope this challenge could lay a solid foundation for future research on robust and reliable depth estimation.
arXiv Detail & Related papers (2023-07-27T17:59:56Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Safe Deep RL for Intraoperative Planning of Pedicle Screw Placement [61.28459114068828]
We propose an intraoperative planning approach for robotic spine surgery that leverages real-time observation for drill path planning based on Safe Deep Reinforcement Learning (DRL)
Our approach was capable of achieving 90% bone penetration with respect to the gold standard (GS) drill planning.
arXiv Detail & Related papers (2023-05-09T11:42:53Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - On the Sins of Image Synthesis Loss for Self-supervised Depth Estimation [60.780823530087446]
We show that improvements in image synthesis do not necessitate improvement in depth estimation.
We attribute this diverging phenomenon to aleatoric uncertainties, which originate from data.
This observed divergence has not been previously reported or studied in depth.
arXiv Detail & Related papers (2021-09-13T17:57:24Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Exploring the Vulnerability of Deep Neural Networks: A Study of
Parameter Corruption [40.76024057426747]
We propose an indicator to measure the robustness of neural network parameters by exploiting their vulnerability via parameter corruption.
For practical purposes, we give a gradient-based estimation, which is far more effective than random corruption trials.
arXiv Detail & Related papers (2020-06-10T02:29:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.