Multi-Model Ensemble Approach for Accurate Bi-Atrial Segmentation in LGE-MRI of Atrial Fibrillation Patients
- URL: http://arxiv.org/abs/2409.16083v1
- Date: Tue, 24 Sep 2024 13:33:46 GMT
- Title: Multi-Model Ensemble Approach for Accurate Bi-Atrial Segmentation in LGE-MRI of Atrial Fibrillation Patients
- Authors: Lucas Beveridge, Le Zhang,
- Abstract summary: Atrial fibrillation (AF) is the most prevalent form of cardiac arrhythmia and is associated with increased morbidity and mortality.
This work presents an ensemble approach that integrates multiple machine learning models, including Unet, ResNet, EfficientNet and VGG, to perform automatic bi-atrial segmentation from LGE-MRI data.
- Score: 3.676588766498097
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Atrial fibrillation (AF) is the most prevalent form of cardiac arrhythmia and is associated with increased morbidity and mortality. The effectiveness of current clinical interventions for AF is often limited by an incomplete understanding of the atrial anatomical structures that sustain this arrhythmia. Late Gadolinium-Enhanced MRI (LGE-MRI) has emerged as a critical imaging modality for assessing atrial fibrosis and scarring, which are essential markers for predicting the success of ablation procedures in AF patients. The Multi-class Bi-Atrial Segmentation (MBAS) challenge at MICCAI 2024 aims to enhance the segmentation of both left and right atria and their walls using a comprehensive dataset of 200 multi-center 3D LGE-MRIs, labelled by experts. This work presents an ensemble approach that integrates multiple machine learning models, including Unet, ResNet, EfficientNet and VGG, to perform automatic bi-atrial segmentation from LGE-MRI data. The ensemble model was evaluated using the Dice Similarity Coefficient (DSC) and 95% Hausdorff distance (HD95) on the left & right atrium wall, right atrium cavity, and left atrium cavity. On the internal testing dataset, the model achieved a DSC of 88.41%, 98.48%, 98.45% and an HD95 of 1.07, 0.95, 0.64 respectively. This demonstrates the effectiveness of the ensemble model in improving segmentation accuracy. The approach contributes to advancing the understanding of AF and supports the development of more targeted and effective ablation strategies.
Related papers
- Learning to Predict Global Atrial Fibrillation Dynamics from Sparse Measurements [71.49601301663651]
FibMap is a graph recurrent neural network model that reconstructs global AF dynamics from sparse measurements.
Trained and validated on 51 non-contact whole atria recordings, FibMap reconstructs whole atria dynamics from 10% surface coverage.
Clinical utility of FibMap is demonstrated on real-world contact mapping recordings, achieving reconstruction fidelity comparable to non-contact mapping.
arXiv Detail & Related papers (2025-02-13T16:36:25Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.
This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - Deep Learning-Driven Segmentation of Ischemic Stroke Lesions Using Multi-Channel MRI [0.0]
This study introduces a novel deep learning-based method for segmenting ischemic stroke lesions.
The proposed architecture integrates DenseNet121 as the encoder with Self-Organized Operational Neural Networks (ONN) in the decoder.
The model achieved Dice Similarity Coefficients (DSC) of 83.88% using DWI alone, 85.86% with DWI and ADC, and 87.49% with the integration of DWI, ADC, and eDWI.
arXiv Detail & Related papers (2025-01-04T13:38:06Z) - An Improved Approach for Cardiac MRI Segmentation based on 3D UNet Combined with Papillary Muscle Exclusion [0.0]
It is crucial to develop robust algorithms for the precise segmentation of the heart structure during different phases.
In this work, an improved 3D UNet model is introduced to segment the myocardium and LV, while excluding papillary muscles.
For the practical testing of the proposed framework, a total of 8,400 cardiac MRI images were collected and analysed.
arXiv Detail & Related papers (2024-10-09T12:19:58Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Simultaneous Left Atrium Anatomy and Scar Segmentations via Deep
Learning in Multiview Information with Attention [14.252180320919551]
Three-dimensional late gadolinium enhanced (LGE) cardiac MR (CMR) of left atrial scar in patients with atrial fibrillation (AF) has recently emerged as a promising technique to stratify patients.
This requires a segmentation of the high intensity scar tissue and also a segmentation of the left atrium (LA) anatomy.
We propose a joint segmentation method based on multiview two-task (MVTT)
recessive attention model working directly on 3D LGE CMR images to segment the LA and to delineate the scar.
arXiv Detail & Related papers (2020-02-02T18:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.